线代特征值、特征向量、迹

最近遇到很多需要线代的数学推导,作为学渣这一类的知识总是看一遍忘一遍,理解不了线代的几何意义。这一次刷了著名的3Blue1Brown系列视频,还有贴心up主的中文配音版。感兴趣的童鞋可以看一看,如何从几何运动角度理解线性代数。
作为学渣还是得记录一下推导过程。

1. 线性变换

A v Av Av
用二维矩阵举例。

  • 在以 i ^ = [ 1 0 ] , j ^ = [ 0 1 ] \hat{i}=\begin{bmatrix}1\\0\end{bmatrix},\hat{j}=\begin{bmatrix}0\\1\end{bmatrix} i^=[10],j^=[01]为基的坐标系中,向量 v ⃗ = [ 3 − 2 ] = 3 ⋅ i ^ − 2 ⋅ j ^ \vec v =\begin{bmatrix}3\\-2\end{bmatrix} =3\cdot \hat i -2\cdot \hat j v =[32]=3i^2j^。可以理解为向量 v ⃗ \vec v v 由基 i ^ \hat i i^拉伸3倍后,再与 j ^ \hat j j^反向拉伸2倍得到。
  • 对向量 v ⃗ \vec v v 作线性变换 A v ⃗ A\vec v Av ,等效于对基向量做相同的变换后,再用相同的关系组和变换后的基向量,即:
    A = [ 1 3 − 2 0 ] A v = A ( 3 ⋅ i ^ − 2 ⋅ j ^ ) = 3 A i ^ − 2 A j ^ [ 1 3 − 2 0 ] ⋅ [ 3 − 2 ] = t r a n s ( v ) = 3 ⋅ t r a n s ( i ^ ) + ( − 2 ) ⋅ t r a n s ( j ^ ) = 3 [ 1 − 2 ] + ( − 2 ) [ 3 0 ] \begin{aligned} A&=\begin{bmatrix} 1 &3 \\-2 &0 \end{bmatrix}\\ Av &= A(3\cdot \hat i -2\cdot \hat j) = 3A\hat i -2 A\hat j\\ \begin{bmatrix} 1 &3 \\-2 &0 \end{bmatrix}\cdot \begin{bmatrix} 3 \\-2 \end{bmatrix}= trans(v) &=3 \cdot trans(\hat{i}) + (-2) \cdot trans(\hat{j}) \\ &= 3\begin{bmatrix} 1 \\-2 \end{bmatrix} + (-2)\begin{bmatrix} 3 \\0 \end{bmatrix}\end{aligned} AAv[1230][32]=trans(v)=[1230]=A(3i^2j^)=3Ai^2Aj^=3trans(i^)+(2)trans(j^)=3[12]+(2)[30]
  • 那么A矩阵中的两列 [ 1 − 2 ] , [ 3 0 ] \begin{bmatrix} 1 \\-2 \end{bmatrix},\begin{bmatrix} 3 \\0 \end{bmatrix} [12],[30]等价于原坐标系的基 i ^ , j ^ \hat{i},\hat j i^j^利用相同的线性变换后得到的向量。
2.行列式

d e t ( A ) det(A) det(A)
矩阵A对某个向量做线性变换,我们可以想象成对整个坐标空间的拉伸或压缩。以二维空间举例。

  • 做线性变换前,坐标空间由基向量 i ^ , j ^ \hat{i},\hat j i^j^组成了一个单位面积;经历线性变换A后,基向量 i ^ , j ^ \hat{i},\hat j i^j^变换为 [ 1 − 2 ] , [ 3 0 ] \begin{bmatrix} 1 \\-2 \end{bmatrix} ,\begin{bmatrix} 3 \\0 \end{bmatrix} [12],[30],由这两个向量组成的平行四边形面积就是矩阵A的行列式 d e t ( A ) det(A) det(A)
  • 假如变换后的 i ^ , j ^ \hat{i},\hat j i^j^线性相关, [ 1 1 ] , [ − 1 − 1 ] \begin{bmatrix} 1 \\1 \end{bmatrix} ,\begin{bmatrix} -1 \\-1 \end{bmatrix} [11],[11]。相当于把原二维空间压缩到了一维的直线上。那么单位面积经变换后,面积压缩为0,此时 d e t ( A ) = 0 det(A)=0 det(A)=0

因此行列式 d e t ( A ) det(A) det(A)的几何意义,就是整个坐标空间在经历A的拉伸或压缩后,单位面积/体积/空间的变化比例。

3.特征值、特征向量

A x = λ x Ax=\lambda x Ax=λx
A是n阶矩阵,如果 λ \lambda λ和n维非零向量 x ⃗ \vec x x 有以上关系,那么 λ \lambda λ称为A的特征值, x ⃗ \vec x x 称为A的特征向量。

  • 根据前面的解释我们知道,A做的线性变换,是将原空间做线性变换。如果变换后的基向量间线性相关,那么变换后的空间会被降维;降维后的空间维数,被称为A的秩。
  • 特征向量 x ⃗ \vec x x 的几何意义就在于,原空间经A线性变换后,方向没有发生变化的向量。这个向量经历的变化仅仅是被拉伸、或压缩,而被拉伸或压缩的比例就是 λ \lambda λ值。
    计算时:
    A x = λ x ( A − λ ) x = 0 \begin{aligned} Ax&=\lambda x \\(A-\lambda)x&=0 \\ \end{aligned} Ax(Aλ)x=λx=0
    ∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 1 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ = 0 \begin{vmatrix} a_{11}-\lambda & a_{12} &\cdots& a_{1n} \\ a_{21}& a_{22}-\lambda &\cdots& a_{1n} \\ \vdots & \vdots&&\vdots\\ a_{n1} & a_{n2} &\cdots &a_{nn} -\lambda \end{vmatrix} =0 a11λa21an1a12a22λan2a1na1nannλ=0
    求解满足上述条件的 λ \lambda λ

性质:

  • (1) λ 1 + ⋯ + λ m = a 11 + a 22 + ⋯ + a n n \lambda_1+\cdots+ \lambda_m = a_{11}+a_{22}+\cdots+a_{nn} λ1++λm=a11+a22++ann,迹
  • (2) λ 1 ⋯ λ m = ∣ A ∣ \lambda_1\cdots\lambda_m=|A| λ1λm=A
  • (3)如果 λ 1 , ⋯   , λ m \lambda_1,\cdots,\lambda_m λ1,,λm之间各不相等,对应的特征向量 p 1 , ⋯   , p m p_1,\cdots,p_m p1,,pm线性无关
4.相似矩阵

P − 1 A P = B P^{-1}AP = B P1AP=B
如果满足上述条件,那么A、B就是相似矩阵。

  • A、B其实是同一个线性变换在不同基下的矩阵,就是相似矩阵。

  • 假设有两组不同的基,构成了两个坐标系 O 1 , O 2 O_1,O_2 O1,O2。两个坐标系之间的坐标可以通过线性变换P,和逆向变换 P − 1 P^{-1} P1相互转换。即 P ⋅ x 1 = x 2 ; P − 1 ⋅ x 2 = x 1 P\cdot x_1 = x_2;P^{-1}\cdot x_2=x_1 Px1=x2;P1x2=x1

    • 假设线性变换A是以坐标系 O 2 O_2 O2为基础的运动,但目前我只有 O 1 O_1 O1坐标系的向量 v ⃗ \vec v v ;我们想要知道向量 v ⃗ \vec v v 在坐标系 O 1 O_1 O1中经历A的等价变换后的结果。
    • 可以让向量 v ⃗ \vec v v 先通过变换P,得到在 O 2 O_2 O2坐标系的坐标,即 P ⋅ v ⃗ P\cdot \vec v Pv
    • 再通过线性变换A,得到在 O 2 O_2 O2坐标系中变换后的坐标,即 A P ⋅ v ⃗ AP \cdot \vec v APv
    • 通过逆变换 P − 1 P^{-1} P1,得到在 O 1 O_1 O1坐标系中做等价变换后的坐标,即 P − 1 A P ⋅ v ⃗ P^{-1}AP \cdot \vec v P1APv
  • 而整个过程等价于 v ⃗ \vec v v 直接在 O 1 O_1 O1坐标系中做以 O 1 O_1 O1为基础的等价运动,即 B ⋅ v ⃗ B\cdot \vec v Bv

  • 因此A、B相似的意义是分别基于坐标系 O 1 , O 2 O_1,O_2 O1,O2的等价运动。

性质:

  • 如果A、B相似,则A、B的特征值相同
    ∣ B − λ E ∣ = ∣ P − 1 A P − λ P − 1 P ∣ = ∣ P − 1 ( A − λ ) P ∣ = ∣ A − λ ∣ |B-\lambda E|=|P^{-1}AP-\lambda P^{-1}P|=|P^{-1}(A-\lambda)P|=|A-\lambda| BλE=P1APλP1P=P1(Aλ)P=Aλ

(可以想象成,不管是在哪个坐标系下做线性变换,只要是等价的变换(A、B)相似,变换后的效果是相同的。)

5.矩阵对角化

P − 1 A P = Λ P^{-1}AP = \Lambda P1AP=Λ
其中 Λ \Lambda Λ是一个对角矩阵。对于对角矩阵 Λ \Lambda Λ ,特征值就是对角线上的所有元素。如果A和对角矩阵 Λ \Lambda Λ 相似,那么对角矩阵上的所有元素都是A的特征值。
性质:

  • 如果存在 P , P − 1 P,P^{-1} P,P1,那么P的列向量就是A的特征向量。
    A P = P Λ A ( p 1 , p 2 , ⋯   , p n ) = ( p 1 , p 2 , ⋯   , p n ) Λ = ( p 1 , p 2 , ⋯   , p n ) [ λ 1 λ 2 ⋱ λ n ] = ( λ 1 p 1 , λ 2 p 2 , ⋯   , λ n p n ) \begin{aligned}AP&=P\Lambda \\ A(p_1,p_2,\cdots,p_n)&=(p_1,p_2,\cdots,p_n)\Lambda \\ &=(p_1,p_2,\cdots,p_n)\begin{bmatrix}\lambda_1&&& \\&\lambda_2&& \\&&\ddots &\\&&&\lambda_n\end{bmatrix} \\ &=(\lambda_1p_1,\lambda_2p_2,\cdots,\lambda_np_n)\end{aligned} APA(p1,p2,,pn)=PΛ=(p1,p2,,pn)Λ=(p1,p2,,pn)λ1λ2λn=(λ1p1,λ2p2,,λnpn)
    A p i = λ 1 p i Ap_i = \lambda_1p_i Api=λ1pi,因此 p i p_i pi是A对应 λ i \lambda_i λi的特征向量。
  • 但只有n个特征向量 p i p_i pi线性无关时, P − 1 P^{-1} P1才存在
  • 如果有n个值不同的 λ i \lambda_i λi p i p_i pi一定线性无关,A一定能对角化
6.对称矩阵的对角化

A = A T , P − 1 A P = Λ A=A^T,P^{-1}AP=\Lambda A=AT,P1AP=Λ
性质:

  • (1) 如果 λ i , λ j \lambda_i,\lambda_j λi,λj是对称阵A的两个特征值, p 1 , p 2 p_1,p_2 p1,p2是对应的特征向量。如果 λ 1 ≠ λ 2 \lambda_1 \quad \neq \lambda_2 λ1̸=λ2,那么 p 1 p_1 p1 p 2 p_2 p2正交
    A = A T , A p 1 = λ 1 p 1 , A p 2 = λ 1 p 2 λ 1 p 1 T = ( λ 1 p 1 ) T = ( A p 1 ) T = p 1 T A T = p 1 T A λ 1 p 1 T p 2 = p 1 T A p 2 = λ 2 ( p 1 T p 2 ) ( λ 1 − λ 2 ) p 1 T p 2 = 0 \begin{aligned} A=A^T,Ap_1 = \lambda_1p_1,Ap_2 = \lambda_1p_2\\ \lambda_1p_1^T = (\lambda_1p_1)^T = (Ap_1)^T = p_1^TA^T=p_1^TA\\ \lambda_1p_1^T p_2 = p_1^TAp_2 = \lambda_2(p_1^Tp_2)\\ (\lambda_1-\lambda_2)p_1^Tp_2 = 0\end{aligned} A=AT,Ap1=λ1p1,Ap2=λ1p2λ1p1T=(λ1p1)T=(Ap1)T=p1TAT=p1TAλ1p1Tp2=p1TAp2=λ2(p1Tp2)(λ1λ2)p1Tp2=0

  • (2) 实对称矩阵,必定有正交阵P,使 P − 1 A P = P T A P = Λ P^{-1}AP = P^TAP = \Lambda P1AP=PTAP=Λ. (抄书,为啥我并不明白)

7.矩阵的迹

如果 A ∈ R n × n A \in R^{n\times n} ARn×n,迹 t r A = ∑ i = 1 n a i i trA = \sum_{i=1}^n a_{ii} trA=i=1naii
性质:

  • (1) t r A = t r A T trA = trA^T trA=trAT
  • (2) t r ( A + B ) = t r A + t r B tr(A+B) =trA + trB tr(A+B)=trA+trB
  • (3) t r ( c A ) = c ⋅ t r A tr(c A) = c \cdot trA tr(cA)=ctrA,c是常数项
  • (4) t r ( A B ) = t r ( B A ) tr(AB) =tr(BA) tr(AB)=tr(BA)
    A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] , B = [ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b n 1 b n 2 ⋯ b n n ] A=\begin{bmatrix}a_{11} & a_{12} & \cdots &a_{1n}\\ a_{21} & a_{22} & \cdots &a_{2n} \\ \vdots&\vdots&\ddots&\vdots\\ a_{n1} & a_{n2} & \cdots &a_{nn}\end{bmatrix}, B=\begin{bmatrix}b_{11} & b_{12} & \cdots &b_{1n}\\ b_{21} & b_{22} & \cdots &b_{2n} \\ \vdots&\vdots&\ddots&\vdots\\ b_{n1} & b_{n2} & \cdots &b_{nn}\end{bmatrix} A=a11a21an1a12a22an2a1na2nann,B=b11b21bn1b12b22bn2b1nb2nbnn
    t r ( A B ) = ∑ i = 1 n ( A B ) i i = ∑ i = 1 n ∑ j = 1 n a i j b j i = ∑ j = 1 n ∑ i = 1 n b j i a i j = ∑ i = 1 n ( B A ) j j = t r ( B A ) tr(AB) =\sum_{i=1}^n(AB)_{ii}=\sum_{i=1}^n\sum_{j=1}^na_{ij}b_{ji}=\sum_{j=1}^n\sum_{i=1}^nb_{ji}a_{ij}=\sum_{i=1}^n(BA)_{jj}=tr(BA) tr(AB)=i=1n(AB)ii=i=1nj=1naijbji=j=1ni=1nbjiaij=i=1n(BA)jj=tr(BA)
  • (5) t r ( A B C ) = t r ( C A B ) = t r ( B C A ) tr(ABC)=tr(CAB)=tr(BCA) tr(ABC)=tr(CAB)=tr(BCA)
  • (6) ∂ t r ( A B ) ∂ A = ∂ t r ( B A ) ∂ A = B T \frac{\partial tr(AB)}{\partial A} = \frac{\partial tr(BA)}{\partial A} =B^T Atr(AB)=Atr(BA)=BT
    t r ( A B ) = ∑ i = 1 n ( A B ) i i = ∑ i = 1 n ∑ j = 1 n a i j b j i ∂ t r ( A B ) ∂ a i j = b j i ∂ t r ( A B ) ∂ A = B T \begin{aligned}tr(AB)&=\sum_{i=1}^n(AB)_{ii}=\sum_{i=1}^n\sum_{j=1}^na_{ij}b_{ji} \\ \frac{\partial tr(AB)}{\partial a_{ij}}&= b_{ji} \\ \frac{\partial tr(AB)}{\partial A} &=B^T\end{aligned} tr(AB)aijtr(AB)Atr(AB)=i=1n(AB)ii=i=1nj=1naijbji=bji=BT
  • (7) ∂ t r ( A T B ) ∂ A = ∂ t r ( B A T ) ∂ A = B \frac{\partial tr(A^TB)}{\partial A}=\frac{\partial tr(BA^T)}{\partial A} =B Atr(ATB)=Atr(BAT)=B
  • (8) ∂ t r ( A B A T C ) ∂ A = C T A B T + C A B \frac{\partial tr(ABA^TC)}{\partial A}=C^TAB^T +CAB Atr(ABATC)=CTABT+CAB
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由编者近年来的辅导班笔记 改写而成,本书也可作为大一新生学习线性代数时的参考书, 此次修订,补充、更换、编写了一些新题,同时,针对同学们不太好理解或不大注意的地方,也 相应增加了一些新的说明。 全书共分六章及一个附录,每章均由知识结构网络图、基本内容与重要结论、典型例题分析选 讲以及练习题精选四部分组成。为的是方便同学们总结归纳以及更好地掌知识间的相互透 与转换。 本书力求在较短的时间内,用不多的篇幅,帮助同学们搞清基本概念,掌握基本理论和公式, 了解重点和难点并澄清一些常犯的错误与疑惑。一方面,通过对典型例题的分析讲评,帮助同学 们梳理解题的思路,熟悉常用的方法和技巧;另一方面,精编适量的练习题,帮助同学们更好地理 解和掌握基本内容、基本解题方法,达到巩固、悟新与提高的目的,另外,题后的点评与评注,其日 的在于帮助同学们弄清重点、难点、知识结合点以及解题的基本方法和应注意的问题 在考研数学中,线性代数占5个考题(2个选择,1个填空,2个解答),分值为34分,其平均用 时应当为40分钟左右。因而我们在附录中设计了45分钟的水平测试,希望同学们在复习完本书 之后,用两套自测题及时地进行查漏补缺。线性代数考试大纲对于数学一、二、三来说基本上 样,近年来考题也是趋同,本书中除向量空间仅数一考生要准备外,其余部分大家都应复习。 另外,为了更好地帮助同学们进行复习,“李水乐考研数学辅导团队”特在新浪微博上开设答 疑专区,同学们在考研数学复习中,如若遇到任何问题,即可在线留言,团队老师将尽心为你解答 请访问weibo.com@清华李水乐考研数学辅导团队。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值