【深度学习】实例分割网络

本文介绍了深度学习中的实例分割技术,重点讲解了Mask R-CNN和SOLO系列模型。Mask R-CNN通过并行的mask分支实现像素级分割,而SOLO则通过S×S网格预测每个实例的类别和掩膜,SOLOv2进一步优化了参数量,降低了计算复杂度。
摘要由CSDN通过智能技术生成

Mask R-CNN

img

单独添加了一个和cls/reg并行的mask分支,

通道数就是cls的个数,即为每一类预测一个mask

mask的特征图都要大于cls/reg,因为mask是像素级别的,分辨率应该高些。

最后使用的下图右边的结构,因为有FPN效果更好。

img

SOLOv1

img
  1. 直接假设图中有S×S个目标,共有C个类别

  2. 两个分支
    分类分支:S×S×C。即每个实例所属于的类别。
    掩膜分支:H×W×S×S。即每个实例的掩膜图。
    从而由分类分支确定那个实例是有物体的,从而从掩膜分支找出对应的掩膜图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

manylinux

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值