Instance-sensitive Fully Convolutional Networks
最近在研究实例分割,很多都是先检测出instance的bounding box,然后再对box内的像素分类,以此确定前景和背景。但是,有些实例并不能用box来表示。而这篇文章是先分割,再结合滑动窗口确定box。
传统的FCN网络一般生成一个score map,并不能区分实例。而这篇论文提出的FCN网络,在1/8的特征图上,输出9(k*k,k=3)个instance-sensitive score maps、一个objectness score map。instance-sensitive score maps 和objectness scores均在stride=8的特征图上,采用stride=1的两个卷积核生成,如上图所示。采用滑动窗口的形式确定实例。
objectness scores map
在objectness scores map中,每个score对应一个滑动窗口(在1/8的特征图上,以该位置为中心,m*m的矩形窗,论文中,m=21),score的值表示这个滑动窗口存在instance的概率。
assembling
有K*K个instance-sensitive score maps,假定k=3.每个score maps负责不同位置(九宫格,每个图负责对应格子的分割图)的分割结果。
在assembling的过程中,仅仅是将不同的instance-sensitive score maps拷贝到一个滑动窗口对应的位置,合成一个大小为m*m的分割图。若有多个实例,则合成多个m*m的分割图。如下图的Figure 1.绿色大矩形框为一个滑动窗口,标号1~9为不同instance-sensitive score maps中的对应小图像块,最终的实例分割图是将这9个小图像块拷贝到滑动窗口中对应的位置。
(PS:偷个懒,截图了。后续再完善)