高光谱资料整理

高光谱数据集

一些常用的数据集
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines

印度松数据集(India pine)
该数据集大小为145x145大小,原本为220个连续波段,剔除不能被水反射的20个波段,得到200波段的数据集。
在这里插入图片描述
以下为india pine 数据集中所含有的的类别情况,共含有16个类别。
在这里插入图片描述
高光谱数据的特点
波段多:可以为每个像元提供几十、数百甚至上千个波段
光谱范围窄:波段范围一般小于10nm
波段连续:有些传感器可以在350~2500nm的太阳光内提供几乎连续的地物光谱
数据量大:随着波段数年的增加,数据量成指数增加
信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加(空间,频谱,帧间)。

以下参考《高光谱遥感图像特征提取与分类》与王立国老师授课内容

高光谱数据的处理

高光谱数据处理流程
在这里插入图片描述
我们所做的处理是从数据预处理部分之后开始的。

特征选择与提取方法

高光谱数据的降维方法主要是基于高光谱图像的光谱特征、空间特征或光谱特征与空间特征相结合,既能对特定地物或者像元进行光谱维特征挖掘,又能从图像空间维和光谱特征维进行综合挖掘。
这些方法大体分为两类:
1.从所有的几十甚至上百波段中选择出最合适、最有用的波段,即特征选择。
2.对全部的波段信息,经过线性或非线性的高维向低维的映射变换,即特征提取。

特征选择
基于信息量的波段选择方法
高光谱图像数据之间存在高相关性,那些相关性搞得波段组合未必能获得最高的信息量,应选出那些信息量大而相关性小的波段组合。主要考虑因素是熵、方差、协方差矩阵行列式以及最佳索引因子。
基于类间可分性的波段选择方法
进行数据分类时,需要分析地物类别在哪些波段或者波段组合中容易区分,即高光谱各波段以及各地物间的类间可分性。地物的类间可分性可以针对单波段也可以针对多波段组合来计算,主要计算已知地物类别在单波段或多波段组合中的统计距离,包括均值间标准距离、离散度、Bhattacharyya距离以及J-M距离等。

一些相关算法
1.神经网络敏感性分析
2.多目标粒子群优化算法
3.混合编码差分进化粒子群及多示例学习
4.块阵分解
特征提取
线性特征提取方法
1.主成分分析(PCA)
PCA是最基本的高光谱数据特征提取方法,是一种线性变换,以方差为准则,将原始数据特征变换为相关性较小的几个特征,去掉变换系数相对较小的特征,因此信息量不会有太大的损失。
看到的一些不错的文章(感谢)
https://www.cnblogs.com/pinard/p/6239403.html
https://www.zhihu.com/question/41120789
PCA变化存在两个明显的缺陷:一是受图像数值变化影响明显,二是变换后的信噪比并不一定随着主成分编号的增加而降低。以下计征方法为针对这两个问题相应的改进方法:最大/最小自相关因子分析(MAF)、最小噪声分数(MNF)、噪声调整的主成分分析(NAPC)
2.线性判别分析(LDA)
PCA是一种无监督的数据降维方法,与之不同的是LDA是一种有监督的数据降维方法。
https://www.cnblogs.com/pinard/p/6244265.html
还有一些其他类型的提取方式:典型分析(CA)、小波变换、非负矩阵分解、最佳基特征提取法、类间可分性提取特征、投影寻踪法。
非线性特征提取方法
1.独立成分分析(ICA)
2.非线性主成分分析(KPCA)
3.基于流行学习的方法

混合像元处理

高光谱图像的空间分辨率低,一个像元可能为多个物体的混合,对于混合像元,我们需要找出是由那几个物体混合形成,他们分别占多少比例,进一步将此像元划分之后,混合的物种分布如何。​ 物体的混合和物理分布的空间尺度决定了非线性的程度,大尺度的光谱混合完全可以被看作是一种线性混合,小尺度的内部无核混合是非线性的。
(两种混合模型 参考https://blog.csdn.net/u010976453/article/details/72416039 感谢)
非线性模型
Hapke 混合光谱模型
K-M(KUBELK-MUNK) 混合光谱理论模型
基于辐射通道密度理论的植被、土壤光谱混合模型
SAIL 模型
PROSPECT 模型和PROSAIL 模型

线性模型(LSMM)
当入射光在地物之间不存在多次散射时,在一定IFOV内所形成的混合像元可以通过线性混合模型(LSMM)进行描述。

端元选择

端元选择的目的是找到能那些代表一种物体的纯净像元,选取合适的端元是成功的混合像元分解的关键。
纯像元指数算法(PPI)
内部最大体积算法(N-FINDR)

光谱解混

线性光谱解混是利用LSMM 将遥感图像X 中每个混合像元分解成其端元和对应丰度,从而得到端元矩阵 E(由上面的端元选择得到) 和 丰度矩阵(即所占比例) A 的过程。即:

亚像元定位

亚像元定位的目的是根据地物端元的丰度信息估计地物端元在像元中的空间分布。所采取的方法是基于地物信息的空间相关性,即相近相似原则。

分类方法

监督分类

监督分类常用于高光谱图像数据的定量分析,其主要流程是:首先,利用分类器对已知类别机器对应的训练样本进行学习,获取各图像上各类别像元的分类特征;然后,选择适当的分类判据,根据分类的决策准则进行分类。,基于监督分类的算法主要有以下几种。

基于光谱特征空间的高光谱图像分类

1.光谱特征匹配分类方法

光谱特征匹配分类方法基于地物辐射或反射光谱曲线进行分类识别,是利用光谱库中已知的光谱数据,采用匹配的算法来识别图像中地物覆 盖类型,如决策树分类法和专家系统分类法。

2.遥感图像统计模型分类方法

1.Fisher判别分类法
2.最大似然分类法
面向对象的高光谱图像分类

基于同质地物的提取与分类(ECHO)方法,首先将具有相似性光谱特征的像元划分为同质区域,然后利用最大似然分类器对这些区域进行分类。
ECHO基本分为2个步骤:首先将图像划分为不同的图像对象,图像对象为形状与光谱特征具有相似性的同质区域,然后将那些没有划入同质区域中的像元利用最大似然分类器进行分类,最终获得分类结果。
ECHO具有较高的抗噪声性能,分类的精度以及kappa系数都很高。
面向对象分类的特点是分类的最基本对象从像元转换为图像对象,也称为图斑对象。图斑对象定义为形状与光谱性质具有同质性的单个区域。
面向对象分类的核心是高光谱图像分割,在这个阶段需结合应用光谱信息和空间信息。在很多情况下,提取的图斑对象能为图像分类提供更多有意义的信息,在获取图斑对象后,利用传统分类方法或基于知识的方法对图斑对象进行分类。
面向对象的高光谱图像分类框架,主要包含3个层次,即数据层、特征层和目标层。在这里插入图片描述

非监督分类

非监督分类就是不需要训练样本,直接根据图像数据的组织方式进行自学习的分类方法,其快速简单且具有一定的分类精度,可以作为监督分类的重要补充手段。参考非监督分类的结果,可以对监督分类结果进行修改和调整。
1.聚类法
2.分裂法
3.动态聚类法
4.K均值算法
5.ISODATA
6.模糊K均值聚类算法

  • 2
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值