C++ 204. 计数质数-标记数据更新方向解释

12 篇文章 0 订阅
12 篇文章 0 订阅

204. 计数质数
统计所有小于非负整数 n 的质数的数量。


示例 1:

输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:

输入:n = 0
输出:0
示例 3:

输入:n = 1
输出:0

提示:

0 <= n <= 5 * 106


题解:


方法一:枚举
由于最多有 y = x ∗ y / x y=x*y/x y=xy/x,所以 x x x的取值范围就在 [ 1 , s q r t ( y ) ] [1,sqrt(y)] [1,sqrt(y)]之间。如果大于 s q r t ( y ) sqrt(y) sqrt(y),那么 y / x y/x y/x一定在 [ 1 , s q r t ( y ) ] [1,sqrt(y)] [1,sqrt(y)]之内,只是符号换了位置。

class Solution {
public:
    bool isPrime(int x) {
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }

    int countPrimes(int n) {
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            ans += isPrime(i);
        }
        return ans;
    }
};

方法二:埃氏法
在这里插入图片描述

class Solution {
public:
    int countPrimes(int n) {
        vector<int> isPrime(n, 1);
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            if (isPrime[i]) {
                ans += 1;
                if ((long long)i * i < n) {
                    for (int j = i * i; j < n; j += i) {
                        isPrime[j] = 0;
                    }
                }
            }
        }
        return ans;
    }
};

在这里插入图片描述


方法三:线性筛

class Solution {
public:
    int countPrimes(int n) {
        vector<int> primes;
        vector<int> isPrime(n, 1);
        for (int i = 2; i < n; ++i) {
            if (isPrime[i]) {
                primes.push_back(i);
            }
            for (int j = 0; j < primes.size() && i * primes[j] < n; ++j) {
                isPrime[i * primes[j]] = 0;
                if (i % primes[j] == 0) {//控制倍乘数值
                    break;
                }
            }
        }
        return primes.size();
    }
};

在这里插入图片描述

其他人的解释:https://blog.csdn.net/qq_39763472/article/details/82428602


对照“埃氏法”与“线性筛”可以知道“埃氏法”某些数值是重复标记上“非质数”标记的,这样就造成了计算的冗余。
在这里插入图片描述
LeetCode官方表示这是面试当中不会问到的,本人也认为这个算法当中设计的数学关系过于专业和复杂,“积性函数”相关的内容就不深究了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值