深度学习-ubuntu之路a

1.锐捷上网ubuntu

liuqiang@liuqiang:~$ cd /home/liuqiang/rjsupplicant

liuqiang@liuqiang:~$ sudo chomd +x ,/rjsupplicant.sh

liuqiang@liuqiang:~$ sudo sh ./rjsupplicant.sh -u 学号  -p 密码 -d 1

2.环境安装与配置

https://www.cnblogs.com/wangxiaocvpr/p/5385961.html


---------------------------------------------------------------------------------------------------------------

3.测试opencv

mkdir DisplayImage  
cd DisplayImage
gedit DisplayImage.cpp


#include <opencv2/opencv.hpp>
 #include<stdio.h>
using namespace cv;  

int main(int argc, char** argv)  
{  
     if(argc!= 2)  
     {  
               printf("usage:DisplayImage.out <Image_Path>\n");  
               return -1;  
     }  

     Mat image;  
     image= imread(argv[1], 1);  

    if(!image.data)  
    {  
               printf("Noimage data\n");  
               return -1;  
     }  

     namedWindow("DisplayImage",CV_WINDOW_AUTOSIZE);  
     imshow("DisplayImage",image);  

     waitKey(0);  
     return 0;  
}

gedit CMakeLists.txt


cmake_minimum_required(VERSION 2.8)  
project(DisplayImage)  
find_package(OpenCV REQUIRED)  
add_executable(DisplayImage DisplayImage.cpp)  
target_link_libraries(DisplayImage ${OpenCV_LIBS})

 
cmake .  
make   
./DisplayImage lena.jpg
---------------------------------------------------------------------------------------------------------------

5.测试caffe

1.下载数据:sudo sh ./data/mnist/get_mnist.sh
2.生成lmdb文件:sudo sh ./examples/mnist/create_mnist.sh
    此时在当前文件目录下生成 mnist_train_lmdb, mnist_test_lmdb 文件
3.配置网络: letNet网络的定义
       在 ./examples/mnist/lenet_train_test_prototxt文件中,可直接打开编辑
      sudogedit ./examples/mnist/lenet_train_test_prototxt
     本文不修改lenet_train_test_prototxt直接调用,即不改变网络的结构。
4.运行 ./examples/mnist/train_lenet.sh
     sudo sh ./examples/mnist/train_lenet.sh  这是训练网络的程序
           查看train_lenet.sh ,可用 sudo gedit ./examples/mnist/train_lenet.sh查看
          #!/usr/bin/env sh

          ./build/tools/caffe train--solver=examples/mnist/lenet_solver.prototxt

            可发现上述执行的是examples/mnist/lenet_solver.prototxt,其实使用的是在lenet_solver.prototxt中定义的解决方案。
             查看lent_solver.prototxt可知,这个是训练网络的参数设置,比如学习率,显示结果参数,是否采用CPU 或者GPU等
     本文不修改letnet_solver.prototxt ,即采用默认的解决方案。
5.测试数据集
    有三种接口可以进行测试数据,命令行、Python、MATLAB,本例中采用命令行进行测试,在
  /examples/mnist路径下,执行:
   sudo sh ./examples/mnist/test_lenet.sh
   下面是test_lenet.sh的内容
  ./build/tools/caffe test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel -gpu=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值