深度学习_ubuntu环境配置

这两天花了点时间在配置新电脑(os:ubuntu)的环境上面,其实就是很简单的配置了可以简单跑cnn的环境。其实这些自己之前都干过,但是现在做起来还是有点笨手笨脚的,感觉忘得差不多了,所以想以后如果学了点新东西还是记录一下,省得以后忘了的话可以回来看看,少走很多歪路。也不想记得很详细,大概总的思路记一点就得了。

其实目前想简单训练一下卷积神经网络的话,配置环境的话还是很简单的,无非就是python+pytorch(楼主习惯使用的框架)+一些网络中用到的包。如果还需要使用gpu并行运算的话还需要安装nvidia驱动(显卡驱动,这里就以n卡为例)+cuda+cudnn。那楼主就一步步来走起。

1.nvidia驱动的安装

对于刚刚安装好ubuntu系统的电脑中是不存在显卡驱动,所以需要我们自己安装。
在安装新驱动之前,由于ubuntu系统的特殊性,咱们得先把他原有的驱动
nouveau禁用。
如果已经安装过驱动,则需要检查驱动是否符合你的显卡信息。
然后根据你的显卡信息来安装对应的驱动。

2.cuda和cudnn的安装

大家都知道gpu一般是用来图形计算处理的,其运算能力其实是远远强于cpu的。而深度学习无论是训练还是预测过程中对于运算能力的要求很高,可以说如今深度学习的快速发展就是取决于前几年计算机能力飞速上升的结果。因此人们就想到既然gpu的计算能力这么强,那为什么不用gpu来训练和预测深度学习呢?于是就研发了cuda这一个东西来实现这一目标,而原理楼主也不太清楚。所以说想要实现gpu加速深度学习,cuda必不可少。
而cudnn是用于卷积神经网络的,原理也不大清楚。

3.anaconda的安装

anaconda = python + conda + 大量常用第三方库
因为在使用的python过程中其实会用到很多的第三方库,到时候安装会比较麻烦,所以直接安装anaconda比较方便。
同时conda是一个特别好用的软件包和环境管理工具,其功能基本上满足了我们对软件包管理工具和环境管理工具的需要。

4.pytorch

根据你的os,以及cuda的版本来选择安装适合的pytorch版本即可。

5.安装过程

直接百度,特别多,可以货比三家,防止出错。
··································································································
还刚刚配置完,没有跑过一段完整的代码,随时更新!

Chevin

展开阅读全文
©️2020 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值