MPC概述
模型预测控制(Model Predictive Control,简称MPC)是一种先进的控制策略,它结合了过程模型、在线优化和滚动时间窗口的概念来计算控制输入序列。MPC的核心在于使用一个过程模型来预测未来的系统行为,并通过优化一个成本函数来确定一系列控制动作,这个成本函数旨在指导系统沿着期望的轨迹运行。优化过程考虑了系统的动态约束、操作限制以及可能的控制约束。一旦计算出最优控制序列,通常只实施序列中的第一个控制动作,然后控制器根据新的系统状态更新预测和重新优化过程,这种方法称为滚动优化或递归反馈。MPC特别适合于处理多变量耦合系统、非线性系统以及含有约束的控制问题。
MPC基本原理
1. 系统模型建立
首先,MPC需要一个离散时间的系统模型来描述系统状态随时间的演变。对于线性系统,状态方程可以表示为:
这里:
- 是在时间步 的系统状态向量。
- 是状态转移矩阵。
- 是控制分配矩阵。
- 是在时间步 的控制输入向量。
- 是过程噪声,通常假设为零均值的高斯白噪声。
2. 目标函数定义
MPC的目标是通过优化控制输入来最小化一个性能指标,该指标通常包括预测的跟踪误差和控制输入的平滑性。目标函数可以表示为:
这里:
- 是预测时域的长度。
- 是期望的状态轨迹。
- 是期望的控制输入轨迹。
- 是期望的最终状态。
- , , 是权重矩阵,用于平衡不同时间步和状态的重要性, 和 通常是对角矩阵,而 可以是标量或者对角矩阵。
3. 预测机制
在每个控制步骤,基于当前状态 和一系列预测的控制输入 ,MPC 进行状态预测。预测的递推公式如下:
这里 通常假设为零均值的预测噪声。
4. 优化问题的构建
MPC通过求解一个有限时间范围内的优化问题来找到最优的控制序列。优化问题的目标是最小化目标函数 ,同时受到系统动力学和可能的物理、操作约束的限制。
可能的约束:
约束 和 表示系统可能受到的物理或其他类型的限制。
5.迭代计算过程
-
初始化:在初始时刻 ,收集系统当前状态 。
-
预测:基于当前状态 和一系列预测控制输入 ,,,,通过系统模型进行未来状态的预测。
-
优化:构建并解决一个优化问题,目标是最小化目标函数 ,同时满足系统动力学和约束条件。
-
实施:应用优化问题的解中的第一个控制输入 至系统。
-
更新:在下一个时间步 ,收集系统新的状态 。
-
重复:使用新的状态 重复步骤2到5。
MPC应用案例
电子稳定控制系统(ESC)作为一项关键的汽车主动安全技术,通过实时监测车辆动态并自动调节以预防潜在的不稳定状况,对提升车辆的操控性和安全性发挥着至关重要的作用。在紧急避险操作或面对不利天气条件时,ESC的作用尤为显著。该系统中应用的模型预测控制(MPC)策略,依托于对车辆动态行为的数学建模,实现了对未来行为的预测及基于此的控制决策。MPC控制器综合考虑稳定性、牵引力和操控性等优化目标,计算出一系列控制指令,同时顾及轮胎摩擦极限和车辆动力学约束,确保了控制的精确性和及时性。
1.建立车辆动力学模型:
首先,我们需要一个车辆动力学模型来描述车辆的运动,它包括以下方程:
-
纵向动力学:描述车辆沿轴的运动。 其中, 是车速, 是车辆的纵向加速度。
-
横向动力学:描述车辆沿轴的运动。 其中, 是车辆在轴的位置, 是车辆的航向角, 是转向角, 是车辆的轴距。
-
角速度:描述车辆绕垂直轴的旋转。
2. 目标函数
MPC的目标是优化控制输入以最小化车辆与期望轨迹之间的偏差,并考虑控制输入的平滑性。目标函数可能如下所示:
其中:
- 和 是车辆在第步预测中与期望轨迹的横向和纵向偏差。
- 和 是第步预测中的转向角和加速度控制输入。
- 和 是权重系数,用于平衡轨迹跟踪误差和控制平滑性。
3. 约束条件
在MPC中,我们需要考虑物理和操作约束,例如:
-
转向角限制:
-
加速度限制:
-
车辆稳定性和轮胎摩擦限制等。
4. 离散化和滚动时域
将连续时间模型离散化,以便在数字控制器中实现。离散化后的状态更新方程可能如下:
其中, 是在时间步的状态, 是控制输入, 是离散化的时间步长。
MPC使用滚动时域方法,即在每个控制周期解决优化问题,然后只应用第一个控制输入,并在下一个时间步再次解决优化问题。
5. 求解优化问题
在每个控制周期,基于当前状态,求解以下优化问题:
其中, 是不等式约束, 是等式约束。
6. 实施控制
优化问题求解后,将第一个控制输入应用到车辆上,并在下一个控制周期重复上述过程。
MPC代码
#include <iostream>
#include <vector>
#include <cmath>
// 定义车辆状态
struct VehicleState {
double x; // 车辆在x轴的位置
double y; // 车辆在y轴的位置
double vx; // 车辆在x轴的速度
double vy; // 车辆在y轴的速度
double theta; // 车辆的航向角
double v; // 车辆的速度
};
// 定义控制输入
struct ControlInput {
double steering_angle; // 方向盘转角
double acceleration; // 加速度
};
// 预测车辆状态
VehicleState predict_state(const VehicleState& current_state, const ControlInput& control_input) {
VehicleState next_state;
// 这里使用简单的运动学模型进行预测
double dt = 0.1; // 假设的时间步长
next_state.x = current_state.x + current_state.vx * cos(current_state.theta) * dt;
next_state.y = current_state.y + current_state.vy * sin(current_state.theta) * dt;
next_state.vx += control_input.acceleration * cos(current_state.theta) * dt;
next_state.vy += control_input.acceleration * sin(current_state.theta) * dt;
next_state.theta += (current_state.vx * sin(current_state.theta) - current_state.vy * cos(current_state.theta)) * dt;
next_state.v = sqrt(current_state.vx * current_state.vx + current_state.vy * current_state.vy);
return next_state;
}
// 目标函数,例如:最小化车辆偏离预定轨迹的距离
double objective_function(const std::vector<VehicleState>& predicted_states) {
double cost = 0.0;
// 这里只是一个示例,实际的MPC会涉及更复杂的目标函数
for (const auto& state : predicted_states) {
cost += state.x * state.x + state.y * state.y; // 简化的目标函数
}
return cost;
}
// 约束条件检查函数
bool check_constraints(const ControlInput& control_input) {
// 检查控制输入是否满足约束条件,例如方向盘转角和加速度的范围
const double max_steering_angle = 0.5; // 最大方向盘转角
const double max_acceleration = 2.0; // 最大加速度
return (control_input.steering_angle <= max_steering_angle && control_input.steering_angle >= -max_steering_angle) &&
(control_input.acceleration <= max_acceleration && control_input.acceleration >= -max_acceleration);
}
// MPC求解函数
ControlInput mpc_solve(const VehicleState& current_state, const std::vector<VehicleState>& reference_trajectory) {
ControlInput best_control;
double min_cost = std::numeric_limits<double>::infinity();
// 这里需要实现MPC的求解算法,包括预测、优化等步骤
// 由于MPC求解通常比较复杂,这里只是一个框架示例
// 示例:简单的启发式搜索
for (double steering = -0.5; steering <= 0.5; steering += 0.1) {
for (double acceleration = -2.0; acceleration <= 2.0; acceleration += 0.5) {
ControlInput control_input = {steering, acceleration};
if (check_constraints(control_input)) {
VehicleState next_state = predict_state(current_state, control_input);
std::vector<VehicleState> predicted_trajectory(10, next_state); // 预测10个时间步
double cost = objective_function(predicted_trajectory);
if (cost < min_cost) {
min_cost = cost;
best_control = control_input;
}
}
}
}
return best_control;
}
int main() {
// 假设的初始状态
VehicleState initial_state = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
// 控制周期循环
for (int t = 0; t < 100; ++t) {
ControlInput control = mpc_solve(initial_state, std::vector<VehicleState>{}); // 这里需要传入参考轨迹
std::cout << "Time: " << t << ", Control: Steering=" << control.steering_angle << ", Acceleration=" << control.acceleration << std::endl;
// 应用控制并更新状态
// VehicleState next_state = predict_state(initial_state, control);
// initial_state = next_state;
}
return 0;
}