文章目录
生成式AI(Generative AI)是当前人工智能领域中最具前景的研究方向之一,它能够生成高质量的文本、图像和音频内容。然而,这些模型的鲁棒性问题一直是学术界和工业界关注的焦点,尤其是在对抗性样本攻击愈发复杂的背景下。对抗性样本攻击不仅削弱了模型的性能,还可能造成严重的安全问题,例如生成不符合预期的内容甚至传播误导性信息。为了提升生成式AI的鲁棒性,对抗性训练(Adversarial Training)成为解决这一问题的重要技术手段。
本文将从对抗性训练的基本概念入手,详细探讨其在生成式AI中的应用价值、具体方法、技术挑战及未来发展方向。希望通过全面的分析,为研究者和开发者提供深入的理解和实用的指导。
1. 对抗性训练的基本概念
对抗性训练是一种增强模型鲁棒性的训练技术,其核心思想是通过加入对抗性样本扩展训练数据,使模型能够适应并抵御对抗性攻击。对抗性样本是对原始数据添加了微小扰动后生成的样本,这些扰动可能难以被人类察觉,但却能够显著影响模型的输出。
1.1 对抗性样本的生成
对抗性样本的生成通常基于梯度信息,以下是两种经典方法:
- 快速梯度符号法(Fast Gradient Sign Method, FGSM)
通过计算输入数据的损失函数梯度,快速生成对抗性样本:
- 投影梯度下降法(Projec