线性代数本质深探

#线性代数与微积分的区别

线性代数—>公理化表述—>抽象的—>第二代数学模型
微积分--------->实用导向—>具体的—>第一代数学模型


几个核心概念


1.空间(space)

空间条件空间条件空间条件空间
线性空间定义了范数–>赋范线性空间满足完备性–>巴拿赫空间
赋范线性空间定义了角度–>内积空间满足完备性–>希尔伯特空间

从常见的三维空间出发,进行探究:

三维空间的特点:
  1. 由无穷多位置点组成
  2. 这些点之间存在相对关系
  3. 可以在空间中定义长度、角度
  4. 空间中可以容纳运动,这里的运动是从一点到一点的变换(或者跃迁),并不是微积分上的连续运动
抽象出空间的本质:

空间的本质是:空间容纳运动(变换)
空间与变换:空间是容纳运动的一个对象集合,而变换规定了对应空间的运动(变换)

拓展到线性空间

由空间的本质提出:
问题一:线性空间中的对象是什么,有什么共同点?
问题二:线性空间的运动(线性变换)如何表示?

问题一答案:线性空间中的对象,即空间中的有向线段,即就是向量,可通过选取一组基,并通过坐标表示的方法表达。
问题二答案:在选定一组基后,使用矩阵来描述该空间中任何一个运动(线性变换)。

总结:在线性空间中,选定一组基后,使用向量刻画空间中的对象,使用矩阵来刻画对象的运动,使用矩阵与向量的乘法施加运动

2.基

基,可看成线性空间里面的坐标系,选定一组基,即在线性空间中,选定一个坐标系

一句话:矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述
那么,同一个线性变换,在不同的基下,就会对应不同的描述矩阵

理解:注意区别线性变换线性变换的描述
比喻:线性变换一个人线性变换的描述为对这个人拍照。人不会变,但是拍照的角度会千差万别,角度的变化对应基选择的变化。

3.矩阵

问题:那么给定两个矩阵,是否能知道这两个矩阵是不是对同一个线性变换的描述呢?
答案:肯定的,若矩阵A与B是同一个线性变换的两个不同的描述,那么一定能找到一个非奇异矩阵,使得A、B之间满足:
A = P − 1 B P A=P^{-1}BP A=P1BP即,相似矩阵的定义。所谓相似矩阵,就是
同一个线性变换
不同的描述矩阵

同一个线性变换,在不同的基(坐标系)下,对这个线性变化的描述,表现为不同的矩阵。但是本质相同,所以本征值相同

这里,同一个线性变化的不同的描述矩阵中,总会有性质较好的描述矩阵。如同,不同的角度拍摄一个人,总有美丑之分,不然也不会有著名的斜上方45度。

特殊性质:矩阵不仅可以作为线性变换的描述,而且可以作为一组基(一个坐标系)的描述。
用作变换的矩阵,不仅可以把线性空间中的一个点变换到另一个点去,而且也可以把线性空间中的一组基(一个坐标系)变换到另一组基(一个坐标系)上去。

4.向量

向量形如: a = [ a 1 , a 2 , . . . ] − 1 a=[a_{1},a_{2},...]^{_{-1}} a=[a1,a2,...]1
如果一组向量(矩阵)是线性无关的,那么他们就可以成为度量这个线性空间的一组基,每个向量都躺在一个坐标轴上,成为那根坐标轴上的基本度量单位。
所以,解释了上面矩阵的特殊性质,矩阵既可以描述变换,也可以描述坐标系

5.矩阵乘法

矩阵乘法表示施加变换(左乘):
1.向量的变换
2.坐标系的变换


运动是相对的:


1.对于一个常见的矩阵乘法运算:

M a = b Ma=b Ma=b
其中, M M M为矩阵, a a a b b b为向量。

矩阵 M M M从变换的角度看: 向量 a a a经过矩阵M所描述的线性变换,变成了向量 b b b

  • 如何完成相对运动呢,即向量变换vs坐标系变换?
    答:向量变换为: M a = b Ma=b Ma=b:向量 a a a经过矩阵M所描述的线性变换,变成了向量 b b b
    坐标系变换:将 M a = b Ma=b Ma=b两边同乘 M − 1 M^{-1} M1, M − 1 M^{-1} M1为坐标系变换,得到 a = M − 1 b a=M^{-1}b a=M1b,即向量 b b b经过 M − 1 M^{-1} M1变为 a a a

矩阵 M M M从坐标系描述的角度看:矩阵M描述了一个坐标系,一个向量在坐标系 M M M下度量成为向量 b b b,在坐标系 I I I的度量下,成为向量 a a a I I I为单位阵。

等号代表这两种描述是等价的。

  • 对于单独的一个向量:
    a = [ a 1 , a 2 , . . . ] − 1 a=[a_{1},a_{2},...]^{_{-1}} a=[a1,a2,...]1
    隐含着,在 I I I坐标系下的度量结果为 a a a,即 I a = a Ia=a Ia=a
  • 对于单独的一个矩阵:
    M M M
    隐含着,如果为基,即为一个坐标系;如果为线性变换,意味着,这个矩阵 M M M是在 I I I坐标系下度量的。

坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变换的矩阵相乘
向量变换的角度看坐标系变换,对坐标系N施加M变换,就是把组成坐标系N中的每个向量施加M变换

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值