K近邻算法-python实现

K近邻算法
算法原理:

  1. 将数据转换成向量形式;
  2. 计算输入向量与样本中的距离(比如欧式距离等);
  3. 对距离计算结果排序;取前k个;
  4. 根据指定规则(多数或者按照一定权重进行计算)确定输入向量类别。

python实现;

import numpy as np
import operator
class KnnMethod:
    def __init__(self):
        pass

    def fit(self,train_x,train_y):
        self.X=train_x
        self.Y=train_y
    def predict(self,k,dis,x_test):
        assert dis=='E' or dis=='M','dis must E or M'
        num_test=x_test.shape[0]#测试集样本数
        labelist=[]#存放返回结果的列表
        #欧式距离
            for i in range(num_test):
                distance=np.sqrt(np.sum(((self.X-np.tile(x_test[i],(self.X.shape[0],1)))**2),axis=1))
                nearest_k=np.argsort(distance)
                topK=nearest_k[:k]
                classcound={}#存放标签的字典
                for i in topK:
                    classcound[self.Y[i]]=classcound.get(self.Y[i],0)+1
                    #字典中get方法:返回指定键的值,如果值不在字典中返回默认值0
                soortedclasscound=sorted(classcound.items(),key=operator.itemgetter(1),reverse=True)
                #key指定一个排序函数,operator.itemgetter(1)表示以第二个维度的值进行排序
                labelist.append(soortedclasscound[0][0])#排序后个数最多的标签名
            return np.array(labelist)

代码实现参考《深度学习与图像识别原理与实践》

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页