【通信原理笔记】【二】随机信号分析——2.1 随机过程与其相关函数


前言

在通信系统中存在着随机信号的情况,如通信元件存在热噪声,从而使得信号幅值叠加上一层白噪声,引入了随机性;抑或是信道的非理想,也会对信号引入随机性;再或者发送信号时就是随机选取一个信号波形传输。

因此,有必要对随机信号进行分析。与确定信号不同,随机信号没有办法获取确定的时域信号与频谱图。我们需要寻找其他信号分析方法。下面让我们从认识随机信号开始介绍吧。


一、随机过程

在概率论中我们学过随机变量的定义——用数值表示随机实验结果的变量。比如一个普通的骰子,投一次得到的结果的点数就是一个随机变量。那么,如果我们投出的点数不是一个确定的值,而是一个确定的函数呢?

这种情况下,随机实验的结果就是不用一个变量来表示了,而是用一个随机过程 X ( a ) X(a) X(a),每次随机实验的结果也变成了一个函数 x i ( a ) x_i(a) xi(a)。如果说所有这个函数是关于时间变化的电压值——也就是信号,那么这个随机过程就是一个随机信号。

举个例子,在接收端,接收者并不知道它将会收到什么样的信号,那么它接受的信号 X ( t ) X(t) X(t)就是一个随机信号,每次收到的信号都具有随机性。是的,随机过程和随机变量的区别,就是最终实验的结果是个数值还是一个函数。

二. 随机过程的统计特征

概率论中,我们要分析一个随机变量的统计特征,可以考察它的期望和方差。对于随机过程也是类似。但是由于这时候随机选出来的是一个函数,求出来的期望自然也成了函数而非一个数值:

E X ( t ) = m ( t ) EX(t)=m(t) EX(t)=m(t)

通过上式,我没有容易得到一个零均值的随机过程 X ′ ( t ) = X ( t ) − m ( t ) X'(t)=X(t)-m(t) X(t)=X(t)m(t)。对于任意给定的 t 0 t_0 t0值, X ( t 0 ) X(t_0) X(t0)就退化成了随机变量,我们知道对随机变量统一加减一个常数 m ( t 0 ) m(t_0) m(t0)是不会影响方差的,所以我我们有原随机过程方差为:

D ( X ( t ) ) = D ( X ′ ( t ) ) = E X ′ 2 ( t ) − E ( X ′ ( t ) ) 2 = E X ′ 2 ( t ) D(X(t))=D(X'(t))=EX'^2(t)-E(X'(t))^2=EX'^2(t) D(X(t))=D(X(t))=EX′2(t)E(X(t))2=EX′2(t)

这样随机信号的方差就变成了其对应的零均值随机信号的瞬时功率的期望了。(需要明确的是,我们是对每个时刻 t 0 t_0 t0所确定的随机变量 X ( t 0 ) X(t_0) X(t0)求期望,所以最后得到的期望和方差都是关于时间 t t t的确定函数。)

三、随机过程的相关函数

类似于确定信号中的相关函数,我们也可以定义随机过程的相关函数来进行随机信号的分析:

R ( t , t + τ ) = E X ( t ) X ( t + τ ) R(t,t+\tau)=EX(t)X(t+\tau) R(t,t+τ)=EX(t)X(t+τ)

与确定信号的相关函数是关于时间差 τ \tau τ的函数不同,随机信号的相关函数是关于 t , τ t,\tau t,τ的二元函数。既然如此,那我们就暴力消除 t t t,直接将随机过程的自相关函数对时间 t t t求个平均,得到平均自相关函数 R ( τ ) ‾ \overline{R(\tau)} R(τ)

R ( τ ) ‾ = lim ⁡ T → + ∞ 1 T ∫ − T / 2 T / 2 R ( t , t + τ ) d t \overline{R(\tau)}=\lim_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}R(t,t+\tau)dt R(τ)=limT+T1T/2T/2R(t,t+τ)dt

(需要注意的是,这个平均自相关函数与确定功率信号的自相关函数略有不同的是,除了时间平均,还做了一次数学期望,即统计平均)
可以发现,平均自相关函数只与时间差 τ \tau τ有关,那么它会和确定功率信号的自相关函数拥有类似的性质吗?我们对他做傅里叶变换看看会有什么结果:

G ( f ) = ∫ [ lim ⁡ T → + ∞ 1 T ∫ − T / 2 T / 2 E X ( t ) X ( t + τ ) d t ⋅ e − j 2 π τ ] d τ G(f)=\int\left[\lim_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}EX(t)X(t+\tau)dt\cdot e^{-j2\pi\tau}\right]d\tau G(f)=[limT+T1T/2T/2EX(t)X(t+τ)dtej2πτ]dτ

求数学期望与积分均为线性运算,且 t t t τ \tau τ直接不存在函数关系,因此我们可以调换求期望与极限、积分的顺序,最后再求期望:

G ( f ) = E ∫ [ lim ⁡ T → + ∞ 1 T ∫ − T / 2 T / 2 X ( t ) X ( t + τ ) d t ⋅ e − j 2 π τ ] d τ G(f)=E\int \left[\lim_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}X(t)X(t+\tau)dt\cdot e^{-j2\pi\tau}\right]d\tau G(f)=E[limT+T1T/2T/2X(t)X(t+τ)dtej2πτ]dτ

通过确定信号的功率谱能量谱(【一】1.4)这一篇中,我们知道

∫ lim ⁡ T → + ∞ 1 T ∫ − T / 2 T / 2 X ( t ) X ( t + τ ) d t ⋅ e − j 2 π τ d τ = P X ( f ) \int \lim_{T\to+\infty}\frac{1}{T}\int_{-T/2}^{T/2}X(t)X(t+\tau)dt\cdot e^{-j2\pi\tau}d\tau=P_X(f) limT+T1T/2T/2X(t)X(t+τ)dtej2πτdτ=PX(f)

这里 P X ( f ) P_X(f) PX(f)是关于 X X X的随机功率谱,那么 G ( f ) G(f) G(f)就是对随机功率谱求期望:

G ( f ) = E P X ( f ) = P ( f ) G(f)=EP_X(f)=P(f) G(f)=EPX(f)=P(f)

因此,我们得出一个重要结论:随机信号的平均自相关函数的傅里叶变换,是随机信号功率谱的期望——一般直接称之为随机信号的功率谱。(维纳-辛钦定理)

如果一来,即使我们没有办法确定随机信号的确切的频谱与相关函数,但是我们可以通过求平均自相关函数,再做傅里叶变换的方式,获取随机信号的(期望)功率谱从而进行随机信号的分析。

(p.s.,

  1. 对自相关函数对时间求积分是另一种消除 t t t的方式,类似于确定信号,如此得到的自相关函数的傅里叶变换是随机过程的期望能量谱。实际工程中该积分常常趋于无穷,所有多数情况仍然是使用平均自相关函数。因此也可以得到类似的随机功率信号与随机能量信号的概念,不过在北邮通信原理中并没有给出。
  2. 本文所有的推导都是针对自相关的,互相关的推导与结论完全类似,这里不再重复。)

总结

在这一篇中,介绍了随机过程与随机信号的概念,然后再给出了随机信号的相关函数的定义,并进一步推导了该相关函数的性质。最后推导了维纳-辛钦定理,给出了随机信号的基本分析方法。

在下一篇中,将继续介绍一种特殊的随机过程——平稳随机过程。这种特殊随机过程具有良好的性质,可以有更方便的分析方式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值