【线性代数】【二】2.1 向量空间


前言

在前面第一章的内容中,我们一直在努力想要解好一个线性方程组。在这个过程中,我们渐渐接触到了矩阵的概念。从矩阵的构成的角度来说,其实我们经常处理与分析问题的基本单位,是向量。从这一章开始,我们将以向量为主要研究对象进行学习。


一、空间

在介绍向量空间之前,我们需要先搞清楚空间是怎样一个概念。我们都学习过集合的概念,一些元素构成的整体我们称之为集合。一般这些元素会具有一些相似的性质,比如都是数字的数集,都是电影的电影集,都是向量的向量集等。而所谓空间呢,就是在集合的基础上,再赋予它一些特殊结构,这个具备特殊结构的集合就成了一个空间

二、向量空间

由此可见,在一个集合上定义一个特殊结构,就可以得到一个空间。因此,为了得到一个精妙好用的空间,数学家们在向量集合上提出了线性空间八条公理,从而得到了一种特殊的空间,即向量空间,也称线性空间。首先,我们需要在向量集合 V \bm{V} V上定义向量的加法与数乘运算,且 V V V对所定义的加法与数乘运算是封闭的。封闭性用数学语言表述具体如下:

对于 ∀ x , y ∈ V \forall \bm{x},\bm{y}\in V x,yV,若有 x + y ∈ V \bm{x}+\bm{y}\in V x+yV,则称 V V V对所定义的加法" + + +“封闭。
对于 ∀ x ∈ V \forall \bm{x}\in V xV ∀ α ∈ R \forall \alpha\in R αR,若有 α ⋅ x ∈ V \alpha\cdot\bm{x}\in V αxV,则称 V V V对所定义的数乘” ⋅ \cdot "封闭。

简单来说,就是对任意 V V V中的向量,通过所定义的加法与数乘运算得到的向量仍然属于 V V V

然后若其再满足如下八条运算规则

1)存在加法零元 0 \bm{0} 0:对任意向量 x ∈ V \bm{x}\in\bm{V} xV,有 x + 0 = x \bm{x}+\bm{0}=\bm{x} x+0=x成立.
2)存在加法逆元:对任意向量 x ∈ V \bm{x}\in\bm{V} xV,存在其加法逆元 − x -\bm{x} x x + ( − x ) = 0 \bm{x}+(-\bm{x})=\bm{0} x+(x)=0.
3)满足加法交换律:对任意向量 x , y ∈ V \bm{x},\bm{y}\in\bm{V} x,yV,有 x + y = y + x \bm{x}+\bm{y}=\bm{y}+\bm{x} x+y=y+x成立.
4)满足加法结合律:对任意向量 x , y , z ∈ V \bm{x},\bm{y},\bm{z}\in\bm{V} x,y,zV,有 ( x + y ) + z = x + ( y + z ) (\bm{x}+\bm{y})+\bm{z}=\bm{x}+(\bm{y}+\bm{z}) (x+y)+z=x+(y+z)成立.
5)存在数乘单位 1 ∈ R 1\in R 1R:对任意向量 x ∈ V \bm{x}\in\bm{V} xV,有 1 x = x 1\bm{x}=\bm{x} 1x=x
6)满足数乘结合律:对任意向量 x ∈ V \bm{x}\in\bm{V} xV,任意标量 α , β ∈ R \alpha,\beta\in R α,βR, 有 ( α β ) x = α ( β x ) (\alpha\beta)\bm{x}=\alpha(\beta\bm{x}) (αβ)x=α(βx)成立.
7)满足数乘分配律(标量):对任意向量 x ∈ V \bm{x}\in\bm{V} xV,任意标量 α , β ∈ R \alpha,\beta\in R α,βR,有 ( α + β ) x = α x + β x (\alpha+\beta)\bm{x}=\alpha\bm{x}+\beta\bm{x} (α+β)x=αx+βx.
8)满足数乘分配律(向量):对任意向量 x , y ∈ V \bm{x},\bm{y}\in\bm{V} x,yV,任意标量 α ∈ R \alpha\in R αR,有 α ( x + y ) = α x + α y \alpha(\bm{x}+\bm{y})=\alpha\bm{x}+\alpha\bm{y} α(x+y)=αx+αy.

则称该集合 V \bm{V} V为一个线性空间。虽然略显冗长,其实我们从小学习的算术构建起来的数的世界,也与之类似。1-4条与加法相关:1)加法零元的存在使得我们可以定义加法逆元;2)而加法逆元的存在使得我们有了减法(减去一个向量等价于加上它的逆元);3&4)加法交换律与结合律表明所定义的加法运算与运算对象的计算顺序是无关的。5-8条与数乘运算相关:5)数乘单位类似于加法零元,使得任意向量数乘上该单位均得到其自身;6)表明数乘运算与标量乘法可以任意交换运算顺序;7)表示数乘运算可以与标量加法交换顺序;8)表示数乘运算也可以与前面定义的加法运算交换顺序。

三、向量子空间

上述定义是从集合加运算规则的角度,来描述一个向量空间。倘若我们已经有了一个向量空间了,那么判断它的一个子空间(子集+原运算规则)是否仍然构成向量空间就不用这么麻烦了。因为在这个子空间里,原向量空间上定义的运算规则仍然适用,那我们只需要去判断在该子空间上,所定义的加法数乘运算是否仍然封闭即可。

举几个例子, R 2 R^2 R2集合加上我们中学所学习的向量数乘与向量加法,是构成一个向量空间的。它的子集中,仍然构成向量空间的有:1)零向量;2) R 2 R^2 R2自身;3)任意过原点的直线。这些例子的加法数乘的封闭性不难验证。

四、构造向量空间

如果给出任意的一组相同维度的向量,就以我们熟知的向量加法与数乘运算为基础,不去考虑定义新的复杂的运算规则,怎么构造出一个向量空间呢?

这个问题并不难解决,任意一组相同维度的向量,一定是该维度所有向量所构成的向量空间的子集。那么只要我们添加一些同维度向量,使得添加以后的向量子集能够满足对加法数乘封闭即可。

实际操作就是,对所给的一组向量,做任意系数的线性组合,所得到的向量所构成的子空间,就是一个向量空间。理解也并不复杂,对该空间中任意的向量进行加法数乘运算,其结果可以表示为这些向量的线性组合,则该结果仍然在空间中。

由此可见,向量空间之所以也称为线性空间,与线性组合关系十分密切。其实可以再联想一下我们学习的线性函数的概念:

f ( x ) f(x) f(x)是线性的,如果对 ∀ α , β ∈ R , ∀ x , y ∈ V \forall \alpha,\beta\in R,\forall \bm{x},\bm{y}\in \bm{V} α,βR,x,yV,有 f ( α x + β y ) = α f ( x ) + β f ( y ) f(\alpha\bm{x}+\beta\bm{y})=\alpha f(\bm{x})+\beta f(\bm{y}) f(αx+βy)=αf(x)+βf(y)成立。

从上述定义可以看出,一个运算或者函数被称为线性,就是它能够与加法与数乘运算交换顺序。而线性组合自身就是一种线性运算。(有点像套娃,但是只要按上述定义写一下,就清楚了。)


总结

从这节开始,线性代数就正式开始从向量、空间的角度进行深入学习探讨。

  • 11
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值