ATPFL: Automatic Trajectory Prediction Model Design under Federated Learning Framework
【ATPFL帮助用户联合多源轨迹数据集,自动设计和训练强大的TP轨迹预测模型】
论文链接: link
论文结构
Abstract
1. Introduction
2. Related Works
3. Our Approach
4. Experiments
5. Conclusion and Future Works
一、摘要核心
背景介绍:
好:
轨迹预测模型(TP)在计算机视觉和机器人技术领域取得了很大的成功
不好:
但是它的架构和训练方案的设计需要繁重的人工工作和领域知识,对普通用户来说并不友好。
现有的工作忽略了联邦学习场景,没有充分利用具有丰富实际场景的分布式多源数据集来学习更强大的TP模型。
文章亮点:
弥补了上述缺陷,提出ATPFL来帮助用户联合多源轨迹数据集,来自动设计和训练一个强大的TP模型。
文章思想:
先通过分析和总结现有的工作,建立一个有效的TP搜索空间;
然后基于TP搜索空间的特点,设计了一个关系-序列-感知的搜索策略,实现了TP模型的自动设计;
最后,找到合适的联邦训练方法,分别支持FL框架下的TP模型搜索和最终模型训练,确保了搜索效率和最终的模型性能。
贡献:
大量的实验结果表明,ATPFL可以帮助用户获得性能良好的TP模型,比现有的在单源数据集上训练的TP模型获得更好的结果。
二、Introduction
1. 问题:TP数据孤岛
用来获得TP数据的设备分散在不同的地区,由于隐私保护,数据不能共享,这给现存的TP工作带来了限制。
2. 解决方式
引入联邦学习框架,来联合多个数据源,用一种分布式的和隐私保护的方式,合作获得一个更鲁棒和通用的TP模型。
3. 上述方式的两大挑战
① 在FL框架下设计TP模型是困难的。需要繁重的手工工作和领域知识。
② 适用于TP模型的FL方法尚未被研究。
4. 本文的目标
解决上述挑战,并提出ATPFL算法(结合了自动机器学习和联邦学习)。
① 解决第一个挑战:
设计一个适用于TP领域的自动机器学习算法,建立一个高效的TP领域搜索图空间。
利用GNN和RNN,设计一种关系-序列-感知的策略,来有效地探索TP搜索空间。
② 解决第二个挑战:
确定了一种具有快速收敛性的方法,来支持在AutoML中对TP候选模型的快速评估,从而保证了ATPFL的搜索效率。
用最高效的联邦学习训练方法,训练由ATPFL发现的最优TP模型,从而进一步提高ATPFL的最终性能。
<