Federated Learning: Strategies for Improving Communication Efficiency
论文链接: link
论文结构
Abstract
1. Introduction
2. Structured Update
3. Sketched Update
4. Experiments
一、摘要核心
背景介绍:
介绍联邦学习的思想、算法,说明通信效率的重要性。
文章亮点:
提出两种降低上行通信成本的方法: structured updates 和 sketched updates
① structured updates:直接从一个有限的空间学习更新,可以使用更少的变量参数化。
②sketched updates :学习一个完整的模型更新,压缩后发给服务器。
优势:
在卷积网络和递归网络上的实验表明,该方法可以将通信成本降低两个数量级。
二、 Introduction
- 现有机器学习算法环境需要数据平衡和独立同分布i.i.d.的,和可用的高通量的网络;
而联邦学习的限制是客户数量众多,高度不平衡和non-i.i.d.的数据,以及相对较差的网络连接。 - 联邦学习的同步算法,其中典型的一轮学习包括以下步骤:
(1)客户端的子集都下载现有的模型
(2)每个子集的客户基于本地数据计算模型更新
(3)将模型更新发送到服务器
(4)服务器聚合模型更新,构建一个改进的全局模型 - 说明降低通信成本的重要性
(1)联邦学习的瓶颈:需要客户端向服务器发送一个完整的模型
(2)因素:
网络连接速度的不对称性;
现有的模型压缩方案可以减少下载当前模型所需的带宽并建立加密协议,进一步增加需要上传的比特量。 - 描述问题
① 假设所有的参数都在一个矩阵W中, W ∈ R d 1 × d 2 W\in\mathbb{R}^{d1×d2} W∈Rd1×d2
② 第t轮时,服务器将当前模型 W t W_t Wt分配到 s t s_t st客户端的一个子集 s t s_t st中,客户端基于本地数据独立更新模型。
③ client i 的更新为 H t i H{_t^i} Hti= W t i W{_t^i} Wti- W t {W_t} Wt
④ 客户端将更新传给服务器,服务器进行全局更新。 学习率设为1
- 论文在描述神经网络时,使用二维矩阵 W表示每一层的参数。而卷积核的结构是四维的张量#input × width × height × #output,用二维矩阵 来表达是(# input × width × height)× #output。
三、Structured Update
直接训练结构的更新
限制更新 H t i H{_t^i} Hti有是指定的结构,文中考虑两种结构:low rank and random mask.
low rank
强制使更新矩阵 H t i H{_t^i} Hti的秩不超过k,
将更新矩阵写成乘积的形式 H t i H{_t^i} Hti