【YBTOJ】传球游戏

题解 同时被 2 个专栏收录
183 篇文章 0 订阅
51 篇文章 0 订阅

在这里插入图片描述

思路:

这是一道DP题

首先我们设f[i][j]表示在第i次传球中,求在j手中的方案数
那么从j-1和j+1可以传到它手中,所以转移方程就是 f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + f [ i − 1 ] [ f + 1 ] f[i][j]=f[i-1][j-1]+f[i-1][f+1] f[i][j]=f[i1][j1]+f[i1][f+1]
当然要特判1和n的情况

c o d e code code

#include<iostream>
#include<cstdio>
using namespace std;
int n, m;
long long f[100][100];
int main()
{
	scanf("%d%d", &n, &m);
	f[1][1]=1;
	for(int i=2; i<=m+1; i++)
	{
		for(int j=1; j<=n; j++)
		{
			if(j==1)
				f[i][j]+=f[i-1][n]+f[i-1][2];
			else
			if(j==n)
				f[i][j]+=f[i-1][n-1]+f[i-1][1];
			else
				f[i][j]+=f[i-1][j-1]+f[i-1][j+1];
		}
	}
	printf("%lld", f[1+m][1]);
	return 0;
}
  • 0
    点赞
  • 1
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值