BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的深度学习模型,由Google的研究人员在2018年发布。它是Transformer架构的一种应用,用于自然语言处理(NLP)任务,并且具有显著改善了当时许多NLP基准测试的效果。
BERT的主要创新点在于其采用了双向的Transformer编码器结构来对输入文本进行编码。传统上,RNN或LSTM等序列模型在处理文本时是单向依赖的(例如从左到右或从右到左),而BERT通过自我注意机制实现了对整个句子的双向上下文理解,即每个词不仅考虑它前面的词,也同时考虑后面的词,从而捕捉到了更丰富的语义信息。
BERT的核心训练策略包括两个阶段:
1.预训练:首先在大规模无标签文本数据(如维基百科、书籍等)上进行训练,通过两个自定义的预训练任务——遮蔽语言模型(Masked Language Model, MLM)和下一个句子预测(Next Sentence Prediction, NSP)来学习通用的语言表示。
- 在MLM中,随机掩盖部分单词并让模型根据上下文预测这些被遮蔽的单词。
- 在NSP中,将两段文本输入模型,模型需要判断第二段是否紧跟在第一段之后,以此学习句子之间的连贯性。
2.微调:完成预训练后,BERT模型可以针对具体的下游NLP任务(如文本分类、问答系统、命名实体识别等)进行微调,只需在其顶部添加一个或几个特定任务相关的层即可。
BERT模型的出现极大地推动了NLP领域的发展,其后续改进版本如BERT-large、RoBERTa、DistilBERT等在众多NLP任务中均取得了出色的表现。