开源的机器学习数据集对于学习和研究机器学习算法非常重要。以下是一些常见的开源数据集:
UCI Machine Learning Repository:
- UCI ML Repository 是一个广泛使用的资源,包含了各种领域的数据集,包括分类、回归、聚类等任务。网址:UCI Machine Learning Repository
Kaggle Datasets:
- Kaggle是一个数据科学竞赛平台,同时也提供了许多公开的数据集。网址:Find Open Datasets and Machine Learning Projects | Kaggle
MNIST Database:
- 一个经典的图像识别数据集,包含手写数字的图像。网址:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
CIFAR-10 and CIFAR-100:
- 包含10类和100类的彩色图像数据集,常用于图像分类任务。网址:CIFAR-10 and CIFAR-100 datasets
ImageNet:
- 一个大型视觉数据库,用于图像识别和物体识别研究。网址:ImageNet
Amazon Product Reviews:
- 包含亚马逊商品的用户评论,用于情感分析和文本挖掘。网址:SNAP: Web data: Amazon reviews
Wikipedia Text Data:
- 可以获取维基百科的文本数据,用于语言模型和NLP任务。网址:Wikimedia Downloads
Twitter Data:
- 可以通过Twitter API获取到实时或历史的推文数据,用于社交媒体分析。网址:https://developer.twitter.com/en/docs
Google Fonts Dataset:
- 用于字体识别,包含大量字体样本。网址:https://www.tensorflow.org/datasets/catalog/google_fonts
Labeled Faces in the Wild (LFW):
- 人脸识别数据集,包含人脸图片和对应的标签。网址:http://vis-www.cs.umass.edu/lfw/
AudioSet:
- 由YouTube视频片段组成的多类音频事件数据集。网址:https://research.google.com/audioset/download.html
Pandas Sample Datasets:
- Pandas库自带了一些小型数据集,如iris、tips等,方便初学者使用。网址:Intro to data structures — pandas 2.2.2 documentation
在实际项目中,确保数据集的质量和适用性至关重要。使用任何数据集时都要遵守数据集的使用许可和隐私政策。