免疫算法应用在TSP中的代码示例

免疫算法应用于旅行商问题(TSP)的实现相对复杂,涉及到种群初始化、亲和力评价、选择、突变、交叉等步骤。以下是一个基于Python的简化示例,展示如何使用免疫算法解决TSP问题。请注意,这只是一个基础框架,实际应用中需要根据具体需求调整参数和策略。

import numpy as np
from itertools import permutations
from scipy.spatial.distance import pdist, squareform

def calculate_distance_matrix(cities):
    """
    计算城市间距离矩阵。
    :param cities: 城市坐标列表。
    :return: 距离矩阵。
    """
    coords = np.array(cities)
    distances = squareform(pdist(coords))
    return distances

def initial_population(n_cities, pop_size):
    """
    初始化种群。
    :param n_cities: 城市数量。
    :param pop_size: 种群大小。
    :return: 种群列表。
    """
    population = [list(permutations(range(n_cities))) for _ in range(pop_size)]
    return population

def affinity(population, distance_matrix):
    """
    计算路径的总距离(亲和力)。
    :param population: 当前种群。
    :param distance_matrix: 距离矩阵。
    :return: 各路径的亲和力列表。
    """
    fitness = [sum(distance_matrix[path[i]][path[(i+1)%n_cities]] for i in range(n_cities)) for path in population]
    return fitness

def selection(population, fitness, n_select):
    """
    选择操作,选出亲和力较好的个体。
    :param population: 当前种群。
    :param fitness: 亲和力列表。
    :param n_select: 选择的数量。
    :return: 选中的个体。
    """
    indices = np.argsort(fitness)[:n_select]
    return [population[i] for i in indices]

def mutation(population, mutation_rate):
    """
    变异操作。
    :param population: 当前种群。
    :param mutation_rate: 变异概率。
    :return: 经过变异的新种群。
    """
    mutated_pop = []
    for path in population:
        if np.random.rand() < mutation_rate:
            i, j = np.random.choice(range(len(path)), size=2, replace=False)
            path[i], path[j] = path[j], path[i]  # 交换两个城市的顺序
        mutated_pop.append(path)
    return mutated_pop

def ia_tsp(cities, pop_size=100, generations=1000, mutation_rate=0.01):
    """
    使用免疫算法求解TSP问题。
    """
    distance_matrix = calculate_distance_matrix(cities)
    n_cities = len(cities)
    population = initial_population(n_cities, pop_size)
    
    for gen in range(generations):
        fitness = affinity(population, distance_matrix)
        selected = selection(population, fitness, int(pop_size/2))
        mutated = mutation(selected, mutation_rate)
        population = selected + mutated  # 更新种群
    
    # 最后选择最优解
    best_path = population[np.argmin(affinity(population, distance_matrix))]
    best_distance = min(affinity(population, distance_matrix))
    
    return best_path, best_distance

# 示例:使用一些随机生成的城市坐标
np.random.seed(0)
cities = np.random.rand(20, 2)  # 生成20个城市,每个城市有两个坐标值

best_path, best_distance = ia_tsp(cities)
print(f"最优路径: {best_path}, 总距离: {best_distance}")

这段代码定义了TSP问题的免疫算法实现,包括初始化种群、计算亲和力(即路径总距离)、选择和变异等关键步骤。实际应用中,你可能还需要考虑更复杂的操作,如克隆、局部搜索等,以及对算法性能的进一步优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值