免疫算法应用于旅行商问题(TSP)的实现相对复杂,涉及到种群初始化、亲和力评价、选择、突变、交叉等步骤。以下是一个基于Python的简化示例,展示如何使用免疫算法解决TSP问题。请注意,这只是一个基础框架,实际应用中需要根据具体需求调整参数和策略。
import numpy as np
from itertools import permutations
from scipy.spatial.distance import pdist, squareform
def calculate_distance_matrix(cities):
"""
计算城市间距离矩阵。
:param cities: 城市坐标列表。
:return: 距离矩阵。
"""
coords = np.array(cities)
distances = squareform(pdist(coords))
return distances
def initial_population(n_cities, pop_size):
"""
初始化种群。
:param n_cities: 城市数量。
:param pop_size: 种群大小。
:return: 种群列表。
"""
population = [list(permutations(range(n_cities))) for _ in range(pop_size)]
return population
def affinity(population, distance_matrix):
"""
计算路径的总距离(亲和力)。
:param population: 当前种群。
:param distance_matrix: 距离矩阵。
:return: 各路径的亲和力列表。
"""
fitness = [sum(distance_matrix[path[i]][path[(i+1)%n_cities]] for i in range(n_cities)) for path in population]
return fitness
def selection(population, fitness, n_select):
"""
选择操作,选出亲和力较好的个体。
:param population: 当前种群。
:param fitness: 亲和力列表。
:param n_select: 选择的数量。
:return: 选中的个体。
"""
indices = np.argsort(fitness)[:n_select]
return [population[i] for i in indices]
def mutation(population, mutation_rate):
"""
变异操作。
:param population: 当前种群。
:param mutation_rate: 变异概率。
:return: 经过变异的新种群。
"""
mutated_pop = []
for path in population:
if np.random.rand() < mutation_rate:
i, j = np.random.choice(range(len(path)), size=2, replace=False)
path[i], path[j] = path[j], path[i] # 交换两个城市的顺序
mutated_pop.append(path)
return mutated_pop
def ia_tsp(cities, pop_size=100, generations=1000, mutation_rate=0.01):
"""
使用免疫算法求解TSP问题。
"""
distance_matrix = calculate_distance_matrix(cities)
n_cities = len(cities)
population = initial_population(n_cities, pop_size)
for gen in range(generations):
fitness = affinity(population, distance_matrix)
selected = selection(population, fitness, int(pop_size/2))
mutated = mutation(selected, mutation_rate)
population = selected + mutated # 更新种群
# 最后选择最优解
best_path = population[np.argmin(affinity(population, distance_matrix))]
best_distance = min(affinity(population, distance_matrix))
return best_path, best_distance
# 示例:使用一些随机生成的城市坐标
np.random.seed(0)
cities = np.random.rand(20, 2) # 生成20个城市,每个城市有两个坐标值
best_path, best_distance = ia_tsp(cities)
print(f"最优路径: {best_path}, 总距离: {best_distance}")
这段代码定义了TSP问题的免疫算法实现,包括初始化种群、计算亲和力(即路径总距离)、选择和变异等关键步骤。实际应用中,你可能还需要考虑更复杂的操作,如克隆、局部搜索等,以及对算法性能的进一步优化。