对AP(Affinity Propagation)聚类算法的理解

本文深入解析AP(Affinity Propagation)聚类算法,区别于传统算法,AP视所有节点为潜在中心,通过节点间通信确定最佳中心。介绍AP的核心思想,输入为相似度矩阵,通过吸引度和归属度消息传递决定聚类。吸引度r(i,k)衡量节点k对i的吸引力,归属度a(i,k)表示i选择k为聚类中心的合适度。文章探讨了计算公式背后的逻辑,为进一步实现并行化计算奠定基础。" 136431506,14298101,使用vue2和electron29构建跨平台桌面应用的实战指南,"['前端开发', 'Electron', 'Vue']
摘要由CSDN通过智能技术生成

这段时间因为工作需要,了解了一些聚类算法,发现目前国内的一些资料中对于AP(Affinity Propagation)聚类算法的描述和理解局限在列举公式,说明计算流程层面,没有去深入解读,为什么要这样设计公式,以及AP的核心思想。

首先简要介绍一下AP算法,跟其他聚类算法的不同之处是,AP在开始时,将所有节点都看成潜在的聚类中心,然后通过节点之间的通信,去找出最合适的聚类中心,并将其他节点划分到这些中心下去,所以我们可以认为,AP算法所要做的事情就是去发现这些聚类中心。

AP的输入是一个节点间的相似度矩阵,S,其中S(i,j)表示节点i和节点j之间的相似度,也表明了,j作为i的聚类中心的合适程度,这个相似度的计算可以根据具体应用场景,这里未免误导不作相似度的假设。其中S(k,k)表示节点k作为k的聚类中心的合适程度,可以理解为,节点k成为聚类中心合适度,在最开始时,这个值是初始化的时候使用者给定的值,会影响到最后聚类的数量。

AP中节点间传递的消息为两类:吸引度和归属度。

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值