陶哲轩实分析 5.5 节习题试解

陶哲轩实分析 5.5 节习题试解

5.5.1 设 E R 的一个非空子集, E 有最小上界 M ,它是个实数,即 M=sup(E)。令 E 为集合: E={x:xE} ,证明 M=inf(E)

先证明 M 为下界。
反证法:
假设 M 不是下界,也就是说存在一个 x0E 满足 x0<M
所以 x0>M,x0E 这与 M E 的上界矛盾。所以 M 是下界。

再证明 M 是最大下界。
反证法:
假设 M 不是最大下界,也就是说存在 M 满足 M<M ,并且 xE,x>M
那么有 xE,x<M 这与 M E 的最小上界矛盾。
所以 M 是最大下界。

5.5.2 设 E R 的一个非空子集, n1 是整数,并且 L<K 是两个整数。假设 K/n E 的上界,但 L/n 不是 E 的上界。证明存在整数 m,L<mK 使得 m/n E 的上界,但 (m1)/n 不是 E 的上界。

反证法:
假设不存在这样的整数,也就是对于任意 L<mK 要么 m/n (m1)/n 同是 E 的上界,要么同不是 E 的上界。

m=L+1时,因为 (m1)/n=L/n 不是 E 的上界,所以 (L+1)/n 也不是 E 的上界,所以 (L+2)/n 也不是 E 的上界……
用数学归纳法可以证明任意 L<mK 都有 m/n 不是 E 的上界。
上面已经证明了 m=L+1 m/n 不是 E 的上界。
假设对 m=p,L<pK 时, p/n 不是 E 的上界成立。
那么对于 m=p+1 时,由于 (m1)/n=p/n 不是 E 的上界。所以 (p+1)/n=m/n 也不是 E 的上界。
所以任意 L<mK 都有 m/n 不是 E 的上界。
而这与 K/n E 的上界矛盾。所以一定存在这样的整数 L<mK 满足 m/n E 的上界,但 (m1)/n 不是 E 的上界。

5.5.3 设 E R 的一个非空子集, n1 是整数,并设 m,m 是具有下述性质的整数: m/n m/n E 的上界, (m1)/n (m1)/n 不是 E 的上界。证明 m=m

证明,根据上界的性质,有:

mn>m1nmn>m1n

所以:

m>m1m>m1

假设 mm
那么

m>m1m>mm>m1m>m

导致矛盾,所以 m=m

5.5.4 设 q1,q2,q3, 是比例数序列,并具有这样的性质:只要 M1 是整数,并且 n,nM ,就有 |qnqn|1M 。证明 q1,q2,q3, 是 Cauchy 序列,进而证明:如果 S:=LIMnqn ,那么对于每个 M1 ,都有 |qMS|1/M

先证明 q1,q2,q3, 是 Cauchy 序列。
对于任意的 ε>0 都存在一个自然数 N 满足:

N>1ε1N<ε

n,n>N 时,有

|qnqn|1N<ε

所以 q1,q2,q3, 是 Cauchy 序列。

证明如果 S:=LIMnqn ,那么对于每个 M1 ,都有

|qMS|1M

对任意的自然数 M qM 等价于 Cauchy 序列 qM,qM,qM,
所以 |qMS| 等价于 Cauchy 序列 |qMq1|,|qMq2|,|qMq3|,
我们知道一个 Cauchy 序列去掉前面有限项之后得到的序列是与原序列等价的。
所以 |qMS| 等价于 Cauchy 序列 |qMqM+1|,|qMqM+2|,|qMqM+3|,
pn=|qMqM+n| ,那么 |qMS|=LIMnpn
对任意的正整数 n ,都有 pn1/M,所以 LIMnpn1/M , 即:

|qMS|1M

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值