陶哲轩实分析-第3章-集合论-4-6

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/buck84/article/details/51347598

warning:个人笔记与习题解答,相信有很多错误
这一章全是各种逻辑推理,看完以后确实对集合论有了一定了解,了解了一些推理过程。习题也真多,所以分成1-3和4-6。

3.4 象和逆象

定义3.4.1
为什么根据替换公理,f(S)是明确定义了的
替换公理中,定义P(x,y)为{y:xS使f(x)=y},这样选出的集合就是f(S)

如何根据分类公理来定义f(S)
分类公理中,定义f(S)为{yY:xX使f(x)=y}

为什么

yf(S)<=>xS,y=f(x)
感觉这就是象的定义,不明白作者为什么加了个为什么

例3.4.5的为什么
等号左边等于{2}!={1,2,3}
例3.4.6的为什么
等号左边等于{-2,-1,0,1,2}!={-1,0,1,2}

注3.4.7说得对于双射的两种定义逆函数的方式见习题的说明:
V在f1 的前象
V在f下的逆象

3.10幂集公理元素数量为YX,因为对于X中的每个元素,对应的函数值可能性等于Y的元素数量

为什么指标集是空的则集合为空?
因为没有任何集族

习题

3.4.1
f1(y)=x
V在f1 下的前象

{x:yY使f1(y)=x}

V在f下的逆象

{x:f(x)V}
对于双射函数,上面两个集合相同。

3.4.2

Sf1(f(S))
f(f1(U))=U
,因为对于X中每个元素,Y中只有1个元素与其对应,对与Y中元素,X中可能有多个

3.4.3
根据3.4.1象的定义证明

f(AB):={f(x):xAB}
。上面的集合即属于{f(x):xA} 也包含于{f(x):xB}。证明完毕,等于不成立,考虑A:{0,1}, B:{1,2},f: 0->5 1->6 2->5。
对于
f(A)f(B)f(AB)
考虑
f(A):={f(x):xA}
f(B):={f(x):xB}
f(AB):={f(x):xAB}
yf(A)f(B)则对于A中某个x满足y=f(x),并且B中所有x都有y!=f(x)
zf(AB)则存在某个属于A但不属于B的元素x满足f(x)=z。等号不成立,同样考虑上面的例子A:{0,1}, B:{1,2},f: 0->5 1->6 2->5。
f(AB)=f(A)f(B)两个集合都为{f(x):xA or xB}

3.4.4

f1(UV)={xX:f(x)UV}=
{xX:f(x)U}{xX:f(x)V}=f1(U)f1(V)
其它两个证明类似

3.4.5如果f是满射,则对于每一个yY,x=f1(y)X,显然f(f1(y))=y
如果对于每个ySf(f1(y))=y,显然存在x=f1(y)X满足f(x)=y,这就是满射的定义。
后面的证明类似。

3.4.6
YX,定义函数f:X->{0, 1},如果对X中x定义f(x)=1,xY,否则f(x)=0,这样X的一个子集对应一个函数,根据幂集公理,所有函数为一个集合,这样所有子集也就是一个集合,具体定义方式如下:
根据幂集公理,{0,1}X是一个集合,记为A,设fA,对f记Bf=f1({1})为一个集合,应用替换公理,所有Bf的集合为一个集合。
3.4.7
根据3.4.6,所有X的子集构成一个集合A,所有Y的自己构成一个集合B,对于A中任意一个元素x,B中任意一个元素y,x和y都是集合,根据幂集公理,x为定义域,y为值域构成的所有函数构成一个集合C,同样根据幂集公理,所有x和y为元素的集合也可以组成集合(这个如果推理起来感觉比较麻烦,比如3.5.1,如果能用笛卡尔乘积就简单些),记为D。这样,对于D中某个元素,即某个确定的的x和y,利用替换公理可以将其替换为C中的元素,再对D运用并公理,得到的函数集合就是从X到Y的全体部分函数组成的集合。

3.4.8 并公理和双元素集公理蕴含双并公理
考虑两个集合A和B,根据双元素集公理,存在集合S={A, B},
对S使用并公理,则

xS=xAxB
,这就是公理3.4中定义的双并。

3.4.9
等号两边都等于

{xAβAβ:αI,xAα}
对于3.4则是显然的

3.4.10

(αIAα)(αJAα)={Aα:αinIJ}=αIJAα
后一半同理

3.4.11
第一个等式两边集合的元素都满足:属于X,但不属于任何Aα
第二个等式两边集合的元素都满足:属于X,但不属于某个Aα

3.5 笛卡尔乘积

例3.5.11的为什么
1i1Xi 就是X1中所有元素组成的单元素集。如果将x和(x)等同看待,则显然上面说的也可以等同看待
例3.5.11中值得注意的是1i0Xi不是{},而是{()},因为根据序列的定义,n元序列的每个元素括号中有n个元素,0元序列就是括号中有0个元素。

3.5.12的为什么因为对于任意集合X,存在x属于X,那么就相当于存在(x)属于X组成的1元组。

习题

3.5.1 (x,y)=(x,y)<=>(x=x and y=y)
(x,y):={{x},{x,y}}
(x,y):={{x},{x,y}}
式子3.5的=>很容易证明,对于<=用反证法,
假设x!=x’,则{x’}不属于{{x},{x,y}},而根据两个集合相等,应该是属于的。如果x=x’且y!=y’,则{x’,y’}不属于{{x},{x,y}},证毕。
只要X和Y是集合,根据幂集公理,X到Y的一切函数组成一个集合Z,而每个函数又是定义域-值域对的集合(对定义域的组合按函数定义进行替换),这样,对集合Z执行并公理,得到所有的x,y对,再对Z中每个元素运用公式(x,y):={{x},{x,y}}进行替换,即可得到一个集合。
后面的挑战没太明白,感觉跟前面的没太大区别,让我感觉前面的证明过程可能是有问题的,希望能有正确答案看看就好了。

3.5.2
x=y   <=>   xi=yi 1in
=>
根据函数定义,显然有x(i)=x(i),对于1in
<=
显然x和y的定义域都为1-n,并且对于定义域中每个元素,对应的函数值也相等,这样值域也必然相等。符合函数相等的定义。
对于后面一个结论,感觉注3.5.8已经给出了证明。

3.5.3
自反性、对称性、对偶性都可以根据等号的相应性质得到。

3.5.4
根据定义容易证明

3.5.5
等号根据定义容易证明,后面两个等号都不成立
第二个等式考虑A:{1,2} B:{3,4} C:{5,6} D:{7,8}
第三个等式考虑A:{1,2} B:{3,4} C:{1,2} D{5,6}

3.5.6
根据定义证明,不为空不可以
对于第一个命题,考虑A:{1,2} B:空 C:{3,4} D:{5,6},显然A不是C的子集
对于第二个命题,考虑A:{1,2} B:空 C:空 D:{5,6}

3.5.7 分2步证明,存在、唯一
存在
对于f和g,对于任意zZ,定义Z->XxY为 x->(f(x),g(x))即可
根据序偶相等的定义,可以证明唯一

3.5.8
=>
反证法,根据引理3.5.12,如果都不为空,则存在一个n元组,即不为空。
<=
如果有一个Xi为空,则没法从这个集合中取出一个元素形成n元组,所以笛卡尔乘积为空。

3.5.9
=>
对于等式左边的集合的每个元素x,比如存在αI xAα并且存在βJ xBβ,这样,对于α β组成的序偶,满足xAα xBβ,也就是xAαBβ
<=的证明类似

3.5.10
两个函数相等=>图像相同
根据集合相等的概念,证明一个图像中任意一个元素都属于另外一个图像
<=
首先证明定义域、值域相同,然后证明对于两个函数,相同的x映入同样的函数值

后一半对于函数存在的证明,其实本身就是函数的定义,对于每个X中的元素x,都存在唯一的元素与其对应。

3.5.11
根据提示,对于XxY,设其一切子集的集合为Z,对zZ运用选择公理:对于X中每一个元素x,都属于Z中某个元素(序偶)的第一个分量,并且如3.5.10中后半部分所说,只有一个元素{x,y}属于Y。然后再根据3.5.10,将每个这样的序偶集合替换为函数即可。

3.6集合的基数

习题

3.6.1
自身性X和X,显然有双射f(x)。
对称性X和Y,X-Y有双射显然Y->X有双射。
传递性X和Y,Y和Z,根据双射定义,只需要证明即使满射又是单射即可,容易证明。

3.6.2
X基数0<=>X空集
<=
反证法,假设X非空,基数为0,X至少有一个元素x,那么X/{x}有基数0-1=m,也就是m++=0。与peano公理矛盾。
=>
基数为0,则集合{iN:i<n}为空,与其建立双射的集合也必然为空

3.6.3
引理5.1.14

3.6.4 理解了引理3.6.9的证明,对命题3.6.14的证明很有帮助
(a)令#X=n,则存在X与{iN:1in}的双射f(x)。考虑g(x),如果x<=n则g(x)=f(x),如果x=n+1则g(x)=n+1。也是双射,这样#(X{x})=n+1
(b)令#X=m,则存在X与{iN:1im}的双射f(x)。令#Y=n,则存在Y与{iN:m+1im+n}的双射g(x)。如果X与Y交集为空,则定义h(x)为f(x)和g(x)的组合集合。如果二者有交集,则h不满足函数的定义,因为对于xXY,有两个值与其对应,应该去掉一个,这种情况下#(XY)<m+n
(c)类似(b)
(d)略
(e)令#X=m,则存在X与{iN:1im}的双射f(x)。令#Y=n,则存在Y与{iN:m+1im+n}的双射g(x)。考虑对于XxY的元素a:(x,y),考虑h(a)=f(x)+m*(g(x)-1)
(f)

3.6.5双射:f((x,y))=(y,x)
#(X)×#(Y)=#(X×Y)=#(Y×X)=#(Y)×#(X)

3.6.6

3.6.7

3.6.8

3.6.9

3.6.10

展开阅读全文

没有更多推荐了,返回首页