陶哲轩实分析 6.3 节习题试解

陶哲轩实分析 6.3 节习题试解

6.3.1 设 an=1n ,证明 sup(an)n=1=1 inf(an)n=1=0

1an ,所以 1 an 的上界。
对任意的 x<1 ,都有 a1>x 。所以 1 an 最小的上界,所以 sup(an)n=1=1

an>0 所以 0 an 的下界。对于任意的 x>0 ,设 N=[1/x]+1 ,那么任意的 n>N 都有 an<x 。所以任意的 x>0 都不是 an 的下界。所以 inf(an)n=1=0

6.3. 2 设 (an)n=m 是实数列,并设 x 是广义实数 x:=sup(an)n=m。那么对于一切 nm anx 。另外,只要 MR (an)n=m 的一个上界,就有 xM 。最后,对于每个满足 y<x 的广义实数 y ,至少存在一个 nm,使得 y<anx

因为 (an)n=m R 的子集,由定理6.2.11 有 anx xM

反证法:如果对于所有的 nm 都有 any ,那么 y 就是 (an)n=m上界,必然有 yx ,与题目中 y<x 的条件矛盾。所以 对于每个满足 y<x 的广义实数 y ,至少存在一个 nm,使得 y<anx

6.3.3 设 (an)n=m 是具有有限上界 M 的实数列,并且它是单调增的。那么 (an)n=m 收敛。并且有: limn(an)n=m=sup(an)n=mM

因为 (an)n=m 有界,所以 (an)n=m 有上确界。设 x=sup(an)n=mM

对任意的 ε>0 都有 xε<x 。所以至少存在一个 aN>xε 。又由于 (an)n=m 是单调增的,所以对任意的 n>N 都有 an>xε ,也就是 |anx|<ε 。所以对于任意的 ε>0 (an)n=m 都是终极 ε 接近 x 的。所以 :limn(an)n=m=sup(an)n=mM

6.3.4 证明当 x>1 时,命题 6.3.10 不成立。

n>1 (xn)n=m 是单调增的,但是没有上界。
假设 (xn)n=m 是收敛的: limn(xn)n=m=X

我们有恒等式 xn1xn=1 ,所以有

limn((xn)(1x)n)n=m=1limn(xn)n=m×limn((1x)n)n=m=10×X=1

上面的式子是不合理的。所以 limn(xn)n=m 不存在。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值