新手小白记录一下使用算能SE5盒子,在x86主机上配置环境的过程。
一、开发环境:
一台安装了Ubuntu16.04/18.04/20.04的x86主机,运行内存建议12GB以上,以下操作全部是在x86主机上完成。
我自己的系统为ubuntu20.04
1、准备工作
- 新建一个文件夹用来安装需要的环境,以免和其他的弄混。
- 右击文件夹在终端打开
2、环境配置
(1)安装官方docker
由于官方文档中表明需要ubuntu 22.04,我此时不满足这个要求,所以需要拉取SOPHON的docker镜像,他们的docker镜像里面环境都是配置好的。
- 如果之前在系统里面从来没有安装使用过docker,需要先安装docker,即在终端一次输入以下命令:
sudo apt install docker.io
sudo systemctl start docker
sudo systemctl enable docker
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker
- 安装完docker之后,再拉取镜像
docker pull sophgo/tpuc_dev:v3.2
然后新建一个容器:
docker run --privileged --name myname -v $PWD:/workspace -it sophgo/tpuc_dev:v3.2
这里的myname可以自行修改,这里为了方便,我没有修改。
此时处于workspace状态,下面的操作也都是在workspace里面进行。
(2)安装tpu_mlir
根据官方文档,安装tpu_mlir有两种方式,如下图:
直接线上下载安装会比较慢,这里我选择第二种方式,先下载安装包,在使用pip安装,这里可以先跳转到下面的第e步,使用ls命令查看镜像里面该文件是否存在,如果存在就直接pip安装即可,如果没有的话,可以参考下面的步骤(由于第一次使用docker,命令不熟悉,所以过程比较笨拙)。
具体过程如下:
- a、首先用之前右击tpu_mlir的方式重新打开一个终端,注意,安装mlir的那个终端不要关闭,此时有两个终端同时进行。
- b、右击安装包,直接点复制,可以复制文件的绝对地址。
- c、将其复制到镜像中,命令为
docker cp 文件地址 myname(容器名称):/要复制到的地址
我的命令为:
docker cp /home/ly/tpu_mlir/tpu_mlir-1.6-py3-none-any.whl myname:/workspace/tpu_mlir-1.6-py3-none-any.whl
- d、回到安装mlir的终端:
- e、使用ls命令查看镜像里面是否有安装包,然后使用pip install 命令安装:
至此环境安装成功。
3、ONNX模型编译和转换
(1)准备好文件
- 下载文件:
yolov5s.onnx : https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.onnx
tpu_mlir_resource : https://github.com/sophgo/tpu-mlir/releases/
这里注意,下载下来的文档名字是tpu-mlir-resource.tar,解压之后需要修改名称,中间的连接符修改为下划线:tpu_mlir_resource。和前面的操作相同,先在workspace里面使用ls命令查看文件是否存在,若不存在,打开一个终端进行复制。
- 文件复制
和上面的操作相同,重新打开一个终端进行复制操作。
回到安装的终端
先安装一下tpu_mlir[onnx],这一步忘了截屏,直接就是在workspace里面输入下面命令就可以了。
pip install tpu_mlir[onnx]
在docker中,新建文件夹model_yolov5s用于存放相关文件以及进行转换操作,并进入文件夹
mkdir model_yolov5s && cd model_yolov5s
将图片和模型复制到model_yolov5s文件夹中:
cp -rf tpu_mlir_resource/dataset/COCO2017 .
如果这里和我一样报错的话,需要先退出model_yolov5s文件夹,命令为: cd ..
然后进行复制:
cp -rf yolov5s.onnx ./model_yolov5s
cp -rf tpu_mlir_resource/image ./model_yolov5s
cp -rf tpu_mlir_resource/dataset/COCO2017 ./model_yolov5s
注意:这里也可以先新建model_yolov5s文件夹,直接从本地使用docker cp命令到 model_yolov5s文件夹文件夹中。
新建workspace文件并进入:
mkdir workspace && cd workspace
(2)onnx模型转换成mlir模型
model_transform \
--model_name yolov5s \
--model_def ../yolov5s.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names 350,498,646 \
--test_input ../image/dog.jpg \
--test_result yolov5s_top_outputs.npz \
--mlir yolov5s.mlir
转换成功!转换成功之后会生成一个{model_name}_in_f32.npz文件。
(3)将mlir文件转换成f16的bmodel:
model_deploy \
--mlir yolov5s.mlir \
--quantize F16 \
--processor bm1684x \
--test_input yolov5s_in_f32.npz \
--test_reference yolov5s_top_outputs.npz \
--model yolov5s_1684x_f16.bmodel
转换成功。
(4)mlir量化int8:
通过calibration得到转换int8时的校准表:
run_calibration yolov5s.mlir \
--dataset ../COCO2017 \
--input_num 100 \
-o yolov5s_cali_table
运行完成后会生成名为 yolov5s_cali_table 的文件
转成INT8对称量化模型:
model_deploy \
--mlir yolov5s.mlir \
--quantize INT8 \
--calibration_table yolov5s_cali_table \
--processor bm1684x \
--test_input yolov5s_in_f32.npz \
--test_reference yolov5s_top_outputs.npz \
--tolerance 0.85,0.45 \
--model yolov5s_1684x_int8_sym.bmodel
转换成功!
(5)使用模型进行推理:
- 命令如下:
onnx:
detect_yolov5 \
--input ../image/dog.jpg \
--model ../yolov5s.onnx \
--output dog_onnx.jpg
f16 bmodel:
detect_yolov5 \
--input ../image/dog.jpg \
--model yolov5s_1684x_f16.bmodel \
--output dog_f16.jpg
int8 bmodel:
detect_yolov5 \
--input ../image/dog.jpg \
--model yolov5s_1684x_int8_sym.bmodel \
--output dog_int8_sym.jpg
推理完成的图片都保存在model_yolov5s下的workspace里面。