Mlir环境配置以及yolov5模型转换

新手小白记录一下使用算能SE5盒子,在x86主机上配置环境的过程。

官方文档为(2024.1.23版):1. TPU-MLIR简介 — TPU-MLIR 1.6.215 文档 (sophgo.com)icon-default.png?t=N7T8https://doc.sophgo.com/sdk-docs/v23.09.01-lts/docs_latest_release/docs/tpu-mlir/quick_start/html/01_introduction.html

一、开发环境:

一台安装了Ubuntu16.04/18.04/20.04的x86主机,运行内存建议12GB以上,以下操作全部是在x86主机上完成。

我自己的系统为ubuntu20.04

1、准备工作

  • 新建一个文件夹用来安装需要的环境,以免和其他的弄混。
  • 右击文件夹在终端打开

2、环境配置

(1)安装官方docker

由于官方文档中表明需要ubuntu 22.04,我此时不满足这个要求,所以需要拉取SOPHON的docker镜像,他们的docker镜像里面环境都是配置好的。

  • 如果之前在系统里面从来没有安装使用过docker,需要先安装docker,即在终端一次输入以下命令:
sudo apt install docker.io
sudo systemctl start docker
sudo systemctl enable docker
sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

 

  • 安装完docker之后,再拉取镜像 
docker pull sophgo/tpuc_dev:v3.2

 然后新建一个容器:

docker run --privileged --name myname -v $PWD:/workspace -it sophgo/tpuc_dev:v3.2

这里的myname可以自行修改,这里为了方便,我没有修改。

此时处于workspace状态,下面的操作也都是在workspace里面进行。

(2)安装tpu_mlir

根据官方文档,安装tpu_mlir有两种方式,如下图:

直接线上下载安装会比较慢,这里我选择第二种方式,先下载安装包,在使用pip安装,这里可以先跳转到下面的第e步,使用ls命令查看镜像里面该文件是否存在,如果存在就直接pip安装即可,如果没有的话,可以参考下面的步骤(由于第一次使用docker,命令不熟悉,所以过程比较笨拙)。

具体过程如下:

  • a、首先用之前右击tpu_mlir的方式重新打开一个终端,注意,安装mlir的那个终端不要关闭,此时有两个终端同时进行。
  • b、右击安装包,直接点复制,可以复制文件的绝对地址。
  • c、将其复制到镜像中,命令为

      docker cp 文件地址 myname(容器名称):/要复制到的地址

      我的命令为:

docker cp /home/ly/tpu_mlir/tpu_mlir-1.6-py3-none-any.whl myname:/workspace/tpu_mlir-1.6-py3-none-any.whl

  • d、回到安装mlir的终端:

  •  e、使用ls命令查看镜像里面是否有安装包,然后使用pip install 命令安装:

 至此环境安装成功。

3、ONNX模型编译和转换

(1)准备好文件

  • 下载文件:

 yolov5s.onnx : https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.onnx

  tpu_mlir_resource : https://github.com/sophgo/tpu-mlir/releases/

这里注意,下载下来的文档名字是tpu-mlir-resource.tar,解压之后需要修改名称,中间的连接符修改为下划线:tpu_mlir_resource。和前面的操作相同,先在workspace里面使用ls命令查看文件是否存在,若不存在,打开一个终端进行复制。

  • 文件复制

和上面的操作相同,重新打开一个终端进行复制操作。

 回到安装的终端

先安装一下tpu_mlir[onnx],这一步忘了截屏,直接就是在workspace里面输入下面命令就可以了。

pip install tpu_mlir[onnx]

在docker中,新建文件夹model_yolov5s用于存放相关文件以及进行转换操作,并进入文件夹

mkdir model_yolov5s && cd model_yolov5s

将图片和模型复制到model_yolov5s文件夹中:

cp -rf tpu_mlir_resource/dataset/COCO2017 .

 如果这里和我一样报错的话,需要先退出model_yolov5s文件夹,命令为: cd ..

然后进行复制:

cp -rf yolov5s.onnx ./model_yolov5s
cp -rf tpu_mlir_resource/image ./model_yolov5s
cp -rf tpu_mlir_resource/dataset/COCO2017 ./model_yolov5s

注意:这里也可以先新建model_yolov5s文件夹,直接从本地使用docker cp命令到 model_yolov5s文件夹文件夹中。

新建workspace文件并进入:

mkdir workspace && cd workspace

(2)onnx模型转换成mlir模型

model_transform \
    --model_name yolov5s \
    --model_def ../yolov5s.onnx \
    --input_shapes [[1,3,640,640]] \
    --mean 0.0,0.0,0.0 \
    --scale 0.0039216,0.0039216,0.0039216 \
    --keep_aspect_ratio \
    --pixel_format rgb \
    --output_names 350,498,646 \
    --test_input ../image/dog.jpg \
    --test_result yolov5s_top_outputs.npz \
    --mlir yolov5s.mlir

转换成功!转换成功之后会生成一个{model_name}_in_f32.npz文件。

(3)将mlir文件转换成f16的bmodel:

model_deploy \
    --mlir yolov5s.mlir \
    --quantize F16 \
    --processor bm1684x \
    --test_input yolov5s_in_f32.npz \
    --test_reference yolov5s_top_outputs.npz \
    --model yolov5s_1684x_f16.bmodel

转换成功。

(4)mlir量化int8:

通过calibration得到转换int8时的校准表:

run_calibration yolov5s.mlir \
    --dataset ../COCO2017 \
    --input_num 100 \
    -o yolov5s_cali_table

运行完成后会生成名为 yolov5s_cali_table 的文件

转成INT8对称量化模型:

model_deploy \
    --mlir yolov5s.mlir \
    --quantize INT8 \
    --calibration_table yolov5s_cali_table \
    --processor bm1684x \
    --test_input yolov5s_in_f32.npz \
    --test_reference yolov5s_top_outputs.npz \
    --tolerance 0.85,0.45 \
    --model yolov5s_1684x_int8_sym.bmodel

转换成功!

(5)使用模型进行推理:

  • 命令如下:

onnx:

detect_yolov5 \
    --input ../image/dog.jpg \
    --model ../yolov5s.onnx \
    --output dog_onnx.jpg

f16 bmodel:

detect_yolov5 \
    --input ../image/dog.jpg \
    --model yolov5s_1684x_f16.bmodel \
    --output dog_f16.jpg

int8 bmodel:

detect_yolov5 \
    --input ../image/dog.jpg \
    --model yolov5s_1684x_int8_sym.bmodel \
    --output dog_int8_sym.jpg

推理完成的图片都保存在model_yolov5s下的workspace里面。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值