🤯 天呐!原来我们每天都在用的AI生图,背后竟是如此“粗暴”的原理?! 🤯
你有没有想过,那些让设计师集体失业、让普通人秒变艺术家的AI绘画工具,它们到底是怎么“画”出那些以假乱真的图像的?🤔
今天,就让我们一起揭开AI绘画的神秘面纱,看看它背后究竟隐藏着怎样的“魔法”!🧙
1. AI绘画?不,其实是“噪声”的艺术!🎨
想象一下,你有一张干净的白纸,想要在上面画出一只可爱的猫咪。🐱 你会怎么做? 一笔一笔地勾勒线条,一点一点地填充颜色,对吧?
但AI可不是这么干的! 它的“绘画”过程,更像是“从噪声中捞图”。
啥是噪声? 你可以把它想象成电视机没有信号时出现的雪花点,或者收音机调台时发出的“沙沙”声。 它们看起来杂乱无章,毫无意义,对吧?
AI绘画的第一步,就是往一张干净的图片上,一点一点地“加噪声”。就像你往一杯清水里,慢慢地滴入墨水,直到它完全变成一团漆黑。⚫
2. “加噪”容易,“去噪”难? AI的“逆向思维”!🧠
你可能会问:把图片变成噪声,这有什么用? 别急,好戏还在后头!
AI绘画的第二步,就是“去噪”。它会学习如何从这些充满噪声的图片中,一点一点地还原出原始的图像。就像你把一杯墨水,慢慢地过滤、净化,直到它重新变回清澈透明。💧
这个过程,可比“加噪”难多了! 但这正是AI的厉害之处。它通过大量的学习和训练,掌握了从噪声中识别图像特征的能力。 即使图片被噪声“污染”得面目全非,AI也能从中“嗅”出蛛丝马迹,还原出图像的本来面貌。
3. DDPM:AI绘画的“秘密武器”!⚔️
看到这里,你是不是对AI绘画的原理有了一点点感觉了? 其实,上面讲的这个过程,就是目前最火的AI绘画模型之一——DDPM(Denoising Diffusion Probabilistic Models,去噪扩散概率模型)的核心思想。
DDPM就像一位神奇的魔术师,它先用“噪声”把图像“变没”,再用“去噪”的魔法把图像“变回来”。🎩✨
4. 亲手体验“噪声”的魔力!🖐️
说了这么多,不如亲自上手体验一下! 下面这段代码,可以让你直观地看到图片是如何一步步变成噪声的:
import torch
import torch.nn as nn
class NoiseScheduler(nn.Module):
def __init__(self, beta_start=0.0001, beta_end=0.02, num_steps=1000):
"""初始化噪声调度器
Args:
beta_start: β1,初始噪声水平
beta_end: βT,最终噪声水平
num_steps: T,扩散步数
device: 运行设备
"""
super().__init__()
self.beta_start = beta_start
self.beta_end = beta_end
self.num_steps = num_steps
# β_t: 线性噪声调度
self.register_buffer('betas', torch.linspace(beta_start, beta_end, num_steps))
# α_t = 1 - β_t
self.register_buffer('alphas', 1.0 - self.betas)
# α_bar_t = ∏(1-β_i) from i=1 to t
self.register_buffer('alpha_bar', torch.cumprod(self.alphas, dim=0))
# α_bar_(t-1)
self.register_buffer('alpha_bar_prev', torch.cat([torch.tensor([1.0]), self.alpha_bar[:-1]], dim=0))
# sqrt(α_bar_t)
self.register_buffer('sqrt_alpha_bar', torch.sqrt(self.alpha_bar))
# 1/sqrt(α_t)
self.register_buffer('sqrt_recip_alphas', torch.sqrt(1.0 / self.alphas))
# sqrt(1-α_bar_t)
self.register_buffer('sqrt_one_minus_alpha_bar', torch.sqrt(1.0 - self.alpha_bar))
# 1/sqrt(α_bar_t)
self.register_buffer('sqrt_recip_alphas_bar', torch.sqrt(1.0 / self.alpha_bar))
# sqrt(1/α_bar_t - 1)
self.register_buffer('sqrt_recipm1_alphas_bar', torch.sqrt(1.0 / self.alpha_bar - 1))
# 后验分布方差 σ_t^2
self.register_buffer('posterior_var', self.betas * (1.0 - self.alpha_bar_prev) / (1.0 - self.alpha_bar))
# 后验分布均值系数1: β_t * sqrt(α_bar_(t-1))/(1-α_bar_t)
self.register_buffer('posterior_mean_coef1', self.betas * torch.sqrt(self.alpha_bar_prev) / (1.0 - self.alpha_bar))
# 后验分布均值系数2: (1-α_bar_(t-1)) * sqrt(α_t)/(1-α_bar_t)
self.register_buffer('posterior_mean_coef2', (1.0 - self.alpha_bar_prev) * torch.sqrt(self.alphas) / (1.0 - self.alpha_bar))
def get(self, var, t, x_shape):
"""获取指定时间步的变量值并调整形状
Args:
var: 要查询的变量
t: 时间步
x_shape: 目标形状
Returns:
调整后的变量值
"""
# 从变量张量中收集指定时间步的值
out = var[t]
# 调整形状为[batch_size, 1, 1, 1],以便进行广播
return out.view([t.shape[0]] + [1] * (len(x_shape) - 1))
def add_noise(self, x, t):
"""向输入添加噪声
实现公式: x_t = sqrt(α_bar_t) * x_0 + sqrt(1-α_bar_t) * ε, ε ~ N(0,I)
Args:
x: 输入图像 x_0
t: 时间步
Returns:
(noisy_x, noise): 加噪后的图像和使用的噪声
"""
# 获取时间步t对应的sqrt(α_bar_t)
sqrt_alpha_bar = self.get(self.sqrt_alpha_bar, t, x.shape)
# 获取时间步t对应的sqrt(1-α_bar_t)
sqrt_one_minus_alpha_bar = self.get(self.sqrt_one_minus_alpha_bar, t, x.shape)
# 从标准正态分布采样噪声 ε ~ N(0,I)
noise = torch.randn_like(x)
# 实现前向扩散过程: x_t = sqrt(α_bar_t) * x_0 + sqrt(1-α_bar_t) * ε
return sqrt_alpha_bar * x + sqrt_one_minus_alpha_bar * noise, noise
def plot_diffusion_steps(image, noise_scheduler, step_size=100):
"""绘制图像逐步加噪的过程
Args:
image: 原始图像
noise_scheduler: 噪声调度器
step_size: 每隔多少步绘制一次
Returns:
fig: 绘制的图像
"""
num_images = noise_scheduler.num_steps // step_size
fig = plt.figure(figsize=(15, 3))
# 绘制原始图像
plt.subplot(1, num_images + 1, 1)
plt.imshow(show_tensor_image(image))
plt.axis('off')
plt.title('Original')
# 绘制不同时间步的噪声图像
for idx in range(num_images):
t = torch.tensor([idx * step_size])
noisy_image, _ = noise_scheduler.add_noise(image, t)
plt.subplot(1, num_images + 1, idx + 2)
plt.imshow(show_tensor_image(noisy_image))
plt.axis('off')
plt.title(f't={t.item()}')
plt.tight_layout()
return fig
if __name__ == "__main__":
import matplotlib.pyplot as plt
from dataloader import load_transformed_dataset, show_tensor_image
train_loader, test_loader = load_transformed_dataset()
image, _ = next(iter(train_loader))
noise_scheduler = NoiseScheduler()
noisy_image, noise = noise_scheduler.add_noise(image, torch.randint(0, noise_scheduler.num_steps, (image.shape[0],)))
plt.imshow(show_tensor_image(noisy_image))
# 绘制加噪过程
fig = plot_diffusion_steps(image[0:1], noise_scheduler)
plt.show()
只需运行 `python ddpm/diffusion.py`,你就能亲眼见证一张图片是如何逐渐被噪声吞噬的。🤯
5. AI绘画,未来可期!🚀
看完这篇文章,你是不是对AI绘画有了全新的认识? 它不再是高深莫测的“黑科技”,而是一个充满趣味和挑战的领域。
未来,随着技术的不断发展,AI绘画将会给我们带来更多的惊喜和可能性。 也许有一天,我们每个人都能成为AI绘画大师,用想象力和创造力,创造出属于自己的艺术作品!🎨🖼️
#AI绘画 #DDPM #噪声 #去噪 #原理揭秘 #科技 #未来看完这篇文章,你有什么想法? 快来评论区分享你的观点吧!👇