机器学习特征EDA图形小集

这段代码展示了如何利用numpy创建一个上三角矩阵的掩码,并结合Seaborn库生成一个热力图。通过设置vmax为0.3,center为0,确保颜色映射的范围和中心点。同时,使用了diverging_palette创建了一种分段颜色方案,用于显示数据的相关性。最后,热力图还包含了方格边框、数值注释以及调色板的缩略图。
摘要由CSDN通过智能技术生成
mask = np.triu(np.ones_like(df.corr(), dtype=bool))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
f, ax = plt.subplots(figsize=(20,20))
sns.heatmap(df.corr(), mask=mask, vmax=.3, center=0,
            square=True, linewidths=.5, cbar_kws={"shrink": .5},annot=True,fmt='.2f')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值