机器学习基础(Datawhale X 李宏毅苹果书 AI夏令营)

机器学习定义

        机器学习(Machine Learning,ML)是计算机科学的一个分支,旨在让机器具备学习能力。具体而言,机器学习的核心在于让机器具备寻找一个函数的能力,这个函数能够根据输入的数据生成所需的输出结果。通过不断地学习和优化,机器能够自动识别出复杂的模式和关系,而无需人类手动编写规则。

        机器学习的应用非常广泛,包括语音识别、图像识别、AlphaGo 等复杂任务。比如,语音识别就是让机器将一段声音信号转换为相应的文本内容。这一过程本质上是找到一个函数,该函数的输入是声音信号,输出是声音对应的文字内容。由于这一函数非常复杂,难以由人类直接编写,因此通过机器学习的方式让机器自动找出这一函数显得尤为重要。

        同样,图像识别任务中,机器学习需要找到一个函数,该函数的输入是图片,输出是图片中的内容识别结果。AlphaGo 的成功也归功于机器学习,它通过不断学习围棋中的博弈数据,找到一个函数来指导下一步的最佳落子位置。

机器学习任务分类

        根据不同任务中需要找的函数类型,机器学习可以分为以下几种常见的任务:

1. 回归(Regression)

        回归任务的目标是预测一个数值,即函数的输出是一个标量(scalar)。这种任务通常用于预测未来的某个具体数值。比如,预测未来某一时间的 PM2.5 数值。回归任务中的函数 f 的输入可能包括各种与 PM2.5 预测相关的指数,如当前的 PM2.5 数值、平均温度、臭氧浓度等,而输出则是未来某一时间的 PM2.5 数值。寻找这样一个函数的过程就是回归。

2. 分类(Classification)

        分类任务让机器从预先设定的类别(class)中选择一个作为输出。机器通过学习数据中的模式来决定某个输入数据属于哪一类。分类任务的一个典型例子是垃圾邮件检测,邮箱中的分类函数可以判断一封邮件是否为垃圾邮件。这一函数的输出是“垃圾邮件”或“正常邮件”两个选项中的一个。分类任务并不仅限于两个选项,也可以有多个选项。

        举个例子,AlphaGo 在下围棋时需要在 19 × 19 个棋盘位置中选择一个落子点,这个选择过程其实就是一个分类问题。机器通过学习围棋棋盘上黑白子的分布,找到一个函数来从 361 个可能的落子位置中选出下一步的最佳落点。

3. 结构化学习(Structured Learning)

        结构化学习任务的目标是生成一个有结构的物体,而不仅仅是输出一个数字或做出一个选择。例如,机器生成一幅图像或写一篇文章。这种任务需要机器产生更为复杂和有序的输出结构,因此被称为结构化学习。在结构化学习中,机器不再只是做选择题或输出数值,而是需要生成有内在逻辑和结构的内容。

总结

        机器学习通过让机器自动寻找函数,解决了许多复杂且难以通过传统编程方式解决的问题。它的应用范围广泛,从语音识别、图像识别到围棋博弈、自动绘图和写作等。根据任务的不同,机器学习可以分为回归、分类和结构化学习三大类,每一类都有其特定的应用场景和技术实现。随着技术的不断发展,机器学习将在越来越多的领域展现出巨大的潜力。

你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的Anthony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值