二叉搜索树的最小绝对差
链接
给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。
差值是一个正数,其数值等于两值之差的绝对值。
示例 1:
输入:root = [4,2,6,1,3]
输出:1
示例 2:
输入:root = [1,0,48,null,null,12,49]
输出:1
提示:
树中节点的数目范围是 [2, 104]
0 <= Node.val <= 105
递归法
方法一
用中序遍历把二叉搜索树的值存在vector< int >中,成单调递增,计算差值就可以了
方法二
在递归中直接计算
- 返回值——int(差值)
参数——节点
void traversal(TreeNode* root)
- 终止条件
节点为空,差值为1(最小差值),看提示节点数最小2个不需要考虑节点为0和1的情况
if(root==NULL || res==1) return;
- 单次递归
虽然题目为任意两个节点,但搜索二叉树成中序排列,差值最小出现在相邻处
定义全局变量
int res=INT_MAX;
TreeNode* pre=NULL;
中序递归
if(root->left)traversal(root->left);//左
if(root!=NULL&& pre!=NULL) res=min(res,root->val-pre->val);//中
pre=root;
if(root->right)traversal(root->right);//右
中的操作有两步
- 计算差值,取最小值
- 记录上一个节点
代码
class Solution {
public:
int res=INT_MAX;
TreeNode* pre=NULL;
void traversal(TreeNode* root){
if(root==NULL || res==1) return;
if(root->left)traversal(root->left);
if(root!=NULL&& pre!=NULL) res=min(res,root->val-pre->val);
pre=root;
if(root->right)traversal(root->right);
}
int getMinimumDifference(TreeNode* root) {
traversal(root);
return res;
}
};