二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
思路
本题可以从根节点出发
因为搜索二叉树为有序树,最近公共祖先res必为p和q值中间
有3中可能
- res>q && res>p 在左子树
- res<q && res<p 在右子树
- res位与q和p之间(q,p大小未知)
看图:
- q=0 p=4 root=6 在左子树
- q=7 p=9 root=6 在右子树
- q=2 p=8 root=6 在中间
对应上诉3中情况
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL) return NULL;
if(root->val>p->val && root->val>q->val){ //res>q && res>p
TreeNode* left=lowestCommonAncestor(root->left,p,q);
if(left!=NULL) return left;
}
if(root->val<p->val && root->val<q->val){ //res<q && res<p
TreeNode* right=lowestCommonAncestor(root->right,p,q);
if(right!=NULL) return right;
}
return root;
}
};