yolov8 人体姿态识别

引言

在计算机视觉的各种应用中,人体姿态检测是一项极具挑战性的任务,它能够帮助我们理解人体各部位的空间位置。本文将详细介绍如何使用 YOLOv8 和 Python 实现一个人体姿态检测系统,涵盖模型加载、图像预处理、姿态预测到结果可视化的全流程实现。本文只做了行走,站立,跳三种姿态判断,需要其他姿态可自行添加。

效果

在这里插入图片描述

开发环境

  • Python 3.8+
  • PyTorch 1.7+
  • OpenCV 4.5+
  • ultralytics YOLOv8

1. 模型加载与初始化

首先,我们需要一个 YOLOv8 的预训练模型,该模型可以从 Ultralytics 官方网站下载。加载模型的主要目的是将其调整到评估模式,确保在推断时模型的表现为最优。

import torch

class YOLOv8Pose:
    def __init__(self, model_path, device='cpu', conf=0.25, iou=0.7):
        self.model = self.load_model(model_path, device)
        # 其他初始化设置

    def load_model(self, model_path, device):
        ckpt = torch.load(model_path, map_location=device)
        model = ckpt['model'].to(device).eval()
        return model

2. 图像预处理

图像预处理是检测流程中不可或缺的一部分,我们需要调整图像的大小以适应模型的输入要求,同时进行归一化处理。

import cv2 as cv
from ultralytics.data.augment import LetterBox

def preprocess(self, img_path):
    im = cv.imread(img_path)
    im = self.letterbox(im)
    im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB
    im = np.ascontiguousarray(im)
    im = torch.from_numpy(im).to(self.device).float() / 255.0
    return im

3. 推断与后处理

使用加载的模型进行前向推断,并对输出的检测结果进行处理。

def infer(self, img):
    preds = self.model(img)
    # 使用非极大抑制处理预测结果
    return preds

def postprocess(self, prediction):
    # 调整预测框,解析关键点
    return results

4. 结果可视化

对检测到的姿态进行可视化,包括绘制边框、关键点和骨骼连接。

def draw_results(self, image, results):
    # 使用 OpenCV 绘制结果
    return image

5. 整合与测试

将上述所有步骤整合到一个流程中,对指定的图片进行处理并展示结果。

if __name__ == "__main__":
    yolov8 = YOLOv8Pose(model_path='yolov8s-pose.pt')
    img_path = 'path_to_image.png'
    img = yolov8.preprocess(img_path)
    prediction = yolov8.infer(img)
    results = yolov8.postprocess(prediction)
    final_image = yolov8.draw_results(img, results)
    cv.imshow('Detection Results', final_image)
    cv.waitKey(0)

源码已上传到github,需要源码请私信或着评论区留下邮箱。


希望这篇博客能够帮助你理解并实践 YOLOv8 在人体姿态检测上的应用!

YOLO(You Only Look Once)是一种快速而准确的目标检测算法,它将目标检测任务转化为一个回归问题,并且实时地检测出图像中的物体。YOLO姿态识别数据集是用于训练和评估姿态识别模型的数据集。 姿态识别是指从人体图像或视频中,通过分析人体姿势的角度和关节情况,来识别出人体的动作姿态。这项技术可以应用于许多领域,如运动分析、人机交互、安防监控等。 YOLO姿态识别数据集通常包含一系列标注好的人体图像或视频,每个样本都会提供人体的关键点位置信息和对应的姿势标签。这些关键点可以是人体的关节位置,如手腕、肘部、膝盖等,也可以是其他与姿态相关的重要点,如头部、脖子等。姿势标签则描述了人体的动作姿态,如站立、行走、跳跃等。 使用YOLO姿态识别数据集,可以训练一个姿态识别模型。该模型可以接收一张人体图像或视频作为输入,并且能够输出识别出的人体姿态。为了达到更好的性能,训练模型时可以使用数据增强技术来扩充训练集,如旋转、缩放、裁剪等。 为了评估姿态识别模型的性能,可以使用YOLO姿态识别数据集中的一部分作为测试集,然后通过计算准确率、召回率、F1分数等指标来评估模型的性能。这些指标可以帮助我们了解模型的精度和召回能力,从而确定模型的可靠性和适用范围。 总之,YOLO姿态识别数据集是用于训练和评估姿态识别模型的数据集,通过这个数据集,我们可以训练出一个能够实时识别图像中人体姿态的模型,并且通过评估指标来评估模型的性能。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绿箭柠檬茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值