NNL(negative log loss) 和 cross entropy loss的区别

CE formulation:

 NNL公式:

NNL是CE的一种应用形式,使用的就是CE的计算公式,但在通常看到的计算形式是这种:

为什么累加符号以及y_{j}没有了呢?

首先CE计算的是两个分布(真实分布与预测分布)之间的交叉熵,即距离,以此距离值作为损失值。而在多分类(multi-class)任务中,预测分布式模型经过softmax函数后的输出vector,而真实分布则是每个输出目标类(ground truth)的onehot编码,将该值带入CE公式后就得到了最下面所展示的形式。

 

 

另外一种解释:

如何评估分类效果的好坏,这个评估方式需要满足:1.值越高代表结果越好,2.考虑预测值与真实值之间的一致性。一种满足这两种性质的公式如下:

 这个公式的值越高,代表预测结果越好,那么模型效果越好,反之值越低代表结果越差。而模型是通过降低loss值来调整参数,不能直接应用这个公式的结果需要进行一定变化。

变换方式很简单:加负号“-”来变换单调性,使之值越小代表结果越好;同时为了便于计算则加log由连乘与幂乘变成连加与乘法形式。经过变形后NLL公式就变成这样:

参考文献:

Cross entropy and log likelihood

Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python Git 工具,因为这些对于获取源码管理依赖项至关重要。 #### 安装必要的软件包支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值