当下数据的高效利用和精准分析成为了各个领域追求的目标。随着大模型(LLM)技术的飞速发展,如何更好地将其与数据库相结合,成为了研究和实践的热点。Table Augmented Generation (TAG) 技术应运而生,为这一领域带来了新的思路和方法。
一、TAG 技术的核心原理
TAG 的核心在于巧妙地融合了大模型(LLM)的能力和数据库知识。它构建在基于表的结构之上,这种结构为数据处理和结果生成提供了一个有序且高效的框架。当面对一个自然语言查询时,TAG 首先借助 Text2SQL 技术将其转化为 SQL 命令,从而能够与数据库进行交互并获取相关数据。但 TAG 的独特之处在于,它不仅仅满足于数据的获取,还进一步利用 AI 的强大能力对这些数据进行深度分析和处理,最终生成既准确又与上下文紧密相关的结果。
例如,在一个销售数据分析的场景中,如果用户提出 “找出过去一个月销售额最高的产品类别” 这样的自然语言查询,TAG 会迅速将其转换为合适的 SQL 语句,从数据库中提取相关销售数据。然后,通过 AI 算法对这些数据进行分析,可能会识别出销售额的趋势、不同产品类别之间的关联以及可能影响销售额的因素等,为用户提供更全面、更有价值的信息。
二、TAG 与其他类似技术的对比
(一)与 RAG(Retrieval - Augmented Generation)的对比
RAG 主要侧重于将检索方法