在大语言模型(LLM)应用开发中,prompt设计和工程是获取有意义输出的关键,这个过程看似简单,实则充满挑战(探索 Prompt:从基础概念到高级工程技术),犹如在错综复杂的迷宫中寻找正确的路径。为了应对这一挑战,Google Cloud推出了Vertex AI Prompt Optimizer,一个旨在帮助用户快速找到并优化最适合其模型的prompt的服务。今天我们一起聊一聊Vertex AI Prompt Optimizer。
Vertex AI Prompt Optimizer的诞生背景
在设计大语言模型的prompt时,用户需要面对一个相对新兴的学科领域,其中包含了多种亟待探索的技术。为了获得理想的输出,用户必须尝试不同的指令和示例组合,这是一个既耗时又费力的过程。即使找到了一个理想的提示模板,也无法保证它能在不同的LLM上持续有效。因此,当用户希望将提示模板从一个模型迁移到另一个模型时,往往需要重新设计或调整,这无疑增加了额外的工作量。
为了解决这一问题,Google Cloud推出了Vertex AI Prompt Optimizer(https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-optimizer#jsonl-file)。该服务基于Google Research的自动提示优化(APO)方法论文,旨在帮助用户快速找到并优化最适合其模型的提示。通过迭代式的LLM优化算法,Vertex AI Prompt Optimizer能够生成并评估候选提示,从而选择出基于用户优化目标的最佳指令和示例。