利用 Gemini 构建 PDF 文档 AI 管道:原理、实现与应用(含代码)

当下文档处理的自动化需求日益增长,尤其是对于 PDF 文档的有效处理成为了关键任务(ParseStudio:使用统一语法简化PDF文档解析)。随着人工智能技术的迅猛发展,大型语言模型(LLMs)如 ChatGPT 等在自然语言处理领域取得了显著成果,而自动化文档处理也成为了这场技术革命的最大受益者之一。然而,传统的文本处理方式在面对 PDF 文档时面临诸多挑战,如非文本元素(如图像、表格等)的处理困难。今天我们聊一下如何利用 Gemini 构建针对 PDF 文档的 AI 管道,以实现高效、精准的文档处理与信息提取。

一、PDF文档处理的挑战

PDF(Portable Document Format)作为一种广泛使用的文档格式,其设计初衷是确保文档在不同平台和设备上的一致性和可读性。PDF文档由字符、图像、线条及其精确坐标的集合组成,没有固有的“文本”结构,而是被设计为按原样查看,而非作为文本处理。这导致了在处理PDF时(探索 Docling:高效且安全的 PDF 解析利器),仅使用文本方法会丢失大量的布局和视觉元素,从而损失重要的上下文和信息。

例如,PDF中的表格、图表和图像通常包含重要的数据和视觉线索,这些对于理解文档内容至关重要。然而,传统的文本处理工具无法有效提取和解释这些信息,导致信息的不完整和误解。

二、Gemini多模态LLM的优势

为了克服这些挑战,多模态大型语言模型应运而生。Gemini是其中之一,它能够处理包括文本、代码和图像在内的多种模态数据。这种能力为处理PDF文档提供了一种更简洁的解决方案,即使用一个模型同时完成所有任务。

与传统的基于文本的方法相比,Gemini能够理解和处理页面布局,识别表格、图像和文本块,并将它们转换为可用于下游任务的格式。这不仅提高了文档处理的准确性,还大大简化了管道的设计和实施。

三、构建文档 AI 管道的具体步骤

(一)页面分割与总结(Agent 1)

  1. 提取 PDF 页面为图像
    • 使用pdf2image库将 PDF 文档的每一页提取为PIL图像格式,随后将图像编码为 Base64 格式,以便于添加到 LLM 请求中。这一步骤确保了文档的页面能够以适合模型处理的格式进行输入,为后续的分割和总结操作奠定基础。例如,在处理包含大量图表的财务报告 PDF 时,通过这一步骤能够准确地将每一页转换为图像格式,保留图表的完整性和清晰度(MinerU:精准解析PDF文档的开源解决方案)。

    • from document_ai_agents.document_utils import extract_images_from_pdffrom document_ai_agents.image_utils import pil_image_to_base64_jpegfrom pathlib import Pathclass DocumentParsingAgent:    @classmethod    def get_images(cls, state):        """        Extract pages of a PDF as Base64-encoded JPEG images.        """        assert Path(state.document_path).is_file(), "File does not exis
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值