提示词注入攻击(Prompt Injection Attacks ):大语言模型安全的潜在威胁

提示词(prompt)注入攻击是指攻击者通过巧妙构造输入提示词(提示工程(Prompt Engineering)最全综述:本质、技术、最佳实践),试图突破大语言模型的安全防护机制,引导模型产生不符合预期甚至有害的输出。这种攻击利用了大语言模型对输入的敏感性和其在处理复杂提示词时可能出现的漏洞。今天我们一起了解一下可能的一些提示词注入攻击手段,以帮助大家更好地保护大语言模型免受攻击,确保其安全可靠地运行。

一、直接提示词注入

直接提示词(prompt)注入是攻击者最直接的手段之一。他们通过混入特殊字符、符号或毫无意义的字符串,来迷惑模型,使其无法正确识别并过滤这些恶意内容。例如,一个看似无害的关于如何安全使用链锯的问题,当被添加了一个奇怪的后缀如“#XYZ@@s3cr3tKEY%”时,模型可能会因为不认识这个后缀而将其视为某种特殊语言,从而忽略了原本的安全机制。

除了这种“混水摸鱼”的策略外

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值