利用Gemini 2.0+开源框架ExtractThinker轻松提取任何文档信息(含代码)

智能文档处理(Intelligent Document Processing,简称 IDP)已成为众多行业将大量非结构化数据转化为结构化、可操作信息的关键工作流程(利用 Gemini 构建 PDF 文档 AI 管道:原理、实现与应用(含代码))。从发票、驾照到各类报告,这些海量的文档数据蕴含着巨大的商业价值,但传统处理方式往往效率低下且准确性难以保证。而谷歌的 Gemini 2.0 模型与开源框架 ExtractThinker 的结合,为解决这一难题带来了新的曙光。

一、智能文档处理的挑战与现状

在传统的 IDP 流程中,将非结构化数据(如发票、驾照和报告等)转化为结构化信息是一项极具挑战性的任务。虽然大型语言模型(LLMs)如今能够直接处理图像和 PDF 文件(ParseStudio:使用统一语法简化PDF文档解析),但仅仅将图像输入到 LLM 中并期望获得完美的结果往往是不现实的。一个强大的 IDP 管道需要结合多种技术和步骤,包括 OCR 或其他布局提取工具(如 Google Document AI、Tesseract 或 PyPDF)、分类以识别文档类型(发票、合同、执照等)、拆分以处理大型组合文件并将其分解为逻辑部分,以及提取以将信息映射到结构化的 Pydantic 模型(如提取发票编号、日期、总金额或解读图表数据)。然而,实现这样一个完整且高效的 IDP 流程并非易事,不同工具之间的协同、数据处理的准确性和效率等都是需要攻克的难题。

二、Google Document AI:IDP 的重要基石

在深入探讨基于 LLM 的提取之前,不得不提及 Google Document AI。它是谷歌云提供的一种解决方案,具备 OCR、结构解析、分类以及专业领域提取器(如发票解析、W2 表格、银行对账单等)等功能。其定价方面,Document OCR 为每 1000 页 1.50 美元(每月上限 500 万页,更高用量有进一步折扣);Form Parser 和 Custom Extractor 为每 1000 页 30 美元(100 万页 / 月后有折扣);Layout Parser 为每 1000 页 10 美元;预训练的专业处理器(如美国驾照解析器或发票解析器)则按每份文档或每页收费(例如,发票解析每 10 页 0.10 美元)。

当使用 ExtractThinker 时,可以将 DocumentLoaderDocumentAI 附加到基于 LLM 的管道中,实现与 Document AI OCR 或表单解析的统一。这种协同作用十分强大:Document AI 可靠地提取文本,而 Gemini 或其他模型则对这些文本(以及图像)进行解读,以生成高级结构化输出。值得注意的是,在使用时应根据实际情况选择合适的处理器,例如在有视觉功能的情况下,首选 Document OCR 并搭配视觉功能;若视觉功能不可用,则可使用 Layout Parser。

三、Gemini 2.0:多模态模型的新突破

Gemini 2.0 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值