LLM幻觉(Hallucination)缓解技术综述与展望

LLMs 中的幻觉问题(LLM 幻觉:现象剖析、影响与应对策略)对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果,因此,探寻有效的幻觉缓解技术成为当前人工智能研究的关键任务。

一、RAG:基础但有缺陷的缓解手段

检索增强生成(RAG)作为缓解幻觉的常用方法(RAG(Retrieval-Augmented Generation)评测:评估LLM中的幻觉现象),其核心原理是从外部数据源(如知识库、向量数据库)检索相关信息,并将其作为上下文提供给 LLM 辅助文本生成。在许多知识密集型任务中,它能在一定程度上引入外部事实,约束模型输出,避免完全脱离实际的臆想。例如,在回答关于历史事件的问题时,若模型自身知识储备不足,RAG 可从相关历史资料数据库中提取信息,辅助生成相对准确的回答。

尽管如此,RAG 存在诸多局限性。一方面,其效果高度依赖于检索数据的质量。若向量数据库充斥着过时、错误或不相关的数

### 关于LLM幻觉的研究综述 大型语言模型(LLM)的幻觉现象是指其生成的内容可能不符合事实、逻辑或常识的情况。这种现象通常源于训练数据中的偏差以及模型内部复杂的概率分布机制[^1]。 #### 幻觉产生的原因分析 LLM幻觉主要来源于以下几个方面: - **训练数据的质量问题**:如果训练语料库中存在错误的信息或者不一致的数据,那么这些信息可能会被模型学习并重复输出[^2]。 - **上下文理解不足**:尽管 LLM 能够处理大量文本,但在某些情况下它们无法完全理解复杂的情境或领域特定的知识,从而导致生成的结果偏离实际意义[^3]。 #### 减少幻觉技术手段 为了降低 LLM 输出中的幻觉效应,研究人员提出了多种方法和技术改进措施: - **引入外部知识源验证**:通过连接到可靠数据库或其他形式的事实核查工具来增强模型的回答准确性。 - **强化学习结合人类反馈**:这种方法让机器不仅依赖统计规律还考虑到了真实世界的约束条件,有助于提高响应的真实性合理性。 - **微调专用场景下的预训练模型**:针对具体应用场景定制化调整参数设置可以有效减少无关干扰项的影响,进而改善最终效果表现。 ```python def check_factuality(response, knowledge_base): """ Function to verify the factuality of an LLM's response against a given knowledge base. Args: response (str): The output string from the LLM that needs verification. knowledge_base (dict): A dictionary containing factual information as key-value pairs. Returns: bool: True if all statements match known facts within tolerance levels; False otherwise. """ for statement in parse_statements(response): if not compare_statement_to_kb(statement, knowledge_base): return False return True # Example usage demonstrating how one might implement such functionality programmatically knowledge_database = {"capital_of_france": "Paris", ...} generated_text = llm.generate(prompt="What is the capital city of France?") is_correct = check_factuality(generated_text, knowledge_database) print(f"Is the answer correct? {is_correct}") ``` 上述代码片段展示了一个简单函数 `check_factuality` ,它接受来自 LLM 的回复和一个已知的真实值集合作为输入,并返回该回复是否符合所提供的基线标准。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值