数理统计讲义第二章课后答案7

2.16设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为取自均匀分布 ξ = d U ( θ − 1 2 , θ + 1 2 ) \xi\stackrel{d}{=}U(\theta-\frac{1}{2},\theta+\frac{1}{2}) ξ=dU(θ21,θ+21)的简单随机样本, θ ∈ R \theta\in R θR。试证明:对任一 λ ∈ [ 0 , 1 ] , \lambda\in[0,1], λ[0,1], λ ( X ( 1 ) + 1 2 ) + ( 1 − λ ) ( X ( n ) − 1 2 ) \lambda(X_{(1)}+\frac{1}{2})+(1-\lambda)(X_{(n)}-\frac{1}{2}) λ(X(1)+21)+(1λ)(X(n)21)都是 θ \theta θ的最大似然估计量。

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体
ξ = d U ( θ − 1 2 , θ + 1 2 ) \xi\stackrel{d}{=}U(\theta-\frac{1}{2},\theta+\frac{1}{2}) ξ=dU(θ21,θ+21)
总体 ξ \xi ξ的密度函数为
p ( x ; θ ) = { 1 , θ − 1 2 < x < θ + 1 2 0 , o t h e r w i s e . p(x;\theta)=\left\{\begin{array}{rl} 1,& \theta-\frac{1}{2} < x < \theta+\frac{1}{2} \\ 0,& otherwise. \end{array}\right. p(x;θ)={1,0,θ21<x<θ+21otherwise.

似然函数为
L ( θ ) = { 1 , θ − 1 2 < x i < θ + 1 2 0 , o t h e r w i s e . L(\theta)=\left\{\begin{array}{rl}1,&\theta-\frac{1}{2} < x_i < \theta+\frac{1}{2}\\ 0,&otherwise.\end{array}\right. L(θ)={1,0,θ21<xi<θ+21otherwise. ( i = 1 , ⋯   , n ) (i=1,\cdots,n) (i=1,,n)

θ − 1 2 < x i < θ + 1 2 ( i = 1 , ⋯   , n ) \theta-\frac{1}{2}< x_i<\theta+\frac{1}{2}(i=1,\cdots,n) θ21<xi<θ+21(i=1,,n)

θ − 1 2 ≤ x ( 1 ) ≤ x ( n ) ≤ θ + 1 2 \theta-\frac{1}{2}\le x_{(1)}\le x_{(n)}\le\theta+\frac{1}{2} θ21x(1)x(n)θ+21

即当 x ( n ) − 1 2 ≤ θ ≤ x ( 1 ) + 1 2 x_{(n)}-\frac{1}{2}\le \theta\le x_{(1)}+\frac{1}{2} x(n)21θx(1)+21 L ( θ ) = 1 , L(\theta)=1, L(θ)=1,

θ \theta θ的最大似然估计值不唯一。

任意一个统计量 g ( X 1 , ⋯   , X n ) g(X_1,\cdots,X_n) g(X1,,Xn)
若满足 X ( n ) − 1 2 ≤ g ( X 1 , ⋯   , X n ) ≤ X ( 1 ) + 1 2 X_{(n)}-\frac{1}{2}\le g(X_1,\cdots,X_n)\le X_{(1)}+\frac{1}{2} X(n)21g(X1,,Xn)X(1)+21都可以作为的最大似然估计量。


g ( X 1 , ⋯   , X n ) = λ ( X ( 1 ) + 1 2 ) + ( 1 − λ ) ( X ( n ) − 1 2 ) ∀ λ ∈ [ 0 , 1 ] \begin{aligned}g(X_1,\cdots,X_n)&=\lambda(X_{(1)}+\frac{1}{2})\\&+(1-\lambda)(X_{(n)}-\frac{1}{2})\qquad\\&\forall\lambda\in[0,1]\end{aligned} g(X1,,Xn)=λ(X(1)+21)+(1λ)(X(n)21)λ[0,1]
满足 X ( n ) − 1 2 ≤ g ( X 1 , ⋯   , X n ) ≤ X ( 1 ) + 1 2 X_{(n)}-\frac{1}{2}\le g(X_1,\cdots,X_n)\le X_{(1)}+\frac{1}{2} X(n)21g(X1,,Xn)X(1)+21
所以,对任一 λ ∈ [ 0 , 1 ] , \lambda\in[0,1], λ[0,1], λ ( X ( 1 ) + 1 2 ) + ( 1 − λ ) ( X ( n ) − 1 2 ) \lambda(X_{(1)}+\frac{1}{2})+(1-\lambda)(X_{(n)}-\frac{1}{2}) λ(X(1)+21)+(1λ)(X(n)21)都是 θ \theta θ的最大似然估计量。


2.17从某批产品中有放回地随机抽取 n n n件进行检验,其中有 k k k件不合格品。试求该批产品中合格品与不合格品之比 R R R的最大似然估计量。

参考答案:

设这批产品中合格品的件数为 a a a,不合格品的件数为 b b b

从而 a = R b a=Rb a=Rb,不合格率为 p = b a + b = b R b + b = 1 1 + R . p=\frac{b}{a+b}=\frac{b}{Rb+b}=\frac{1}{1+R}. p=a+bb=Rb+bb=1+R1. X X X是随意抽取的 n n n件产品中不合格品的件数,则 X X X服从参数为 p p p的0-1分布.

对于来自总体 X X X的简单随机样本 X 1 , ⋯   , X n , X_1,\cdots,X_n, X1,,Xn, N = X 1 + ⋯ + X n N=X_1+\cdots+X_n N=X1++Xn

则R的似然函数为
L ( R ) = p N ( 1 − p ) n − N = ( 1 1 + R ) N ( R 1 + R ) n − N = R n − N ( 1 + R ) n \begin{aligned}L(R)&=p^N(1-p)^{n-N}\\&=(\frac{1}{1+R})^N(\frac{R}{1+R})^{n-N}\\&=\frac{R^{n-N}}{(1+R)^n}\end{aligned} L(R)=pN(1p)nN=(1+R1)N(1+RR)nN=(1+R)nRnN
对数似然函数为
l ( R ) = ln ⁡ L ( R ) = ( n − N ) ln ⁡ R − n ln ⁡ ( 1 + R ) . \begin{aligned}l(R)&=\ln L(R)\\&=(n-N)\ln R-n\ln(1+ R).\end{aligned} l(R)=lnL(R)=(nN)lnRnln(1+R).
d l ( R ) d R = n − N R − n 1 + R = 0. \frac{dl(R)}{dR}=\frac{n-N}{R}-\frac{n}{1+R}=0. dRdl(R)=RnN1+Rn=0.
由条件知 N = X 1 + ⋯ + X n = k , N=X_1+\cdots+X_n=k, N=X1++Xn=k,

于是似然方程的唯一解 R = n − k k . R=\frac{n-k}{k}. R=knk.

R R R的最大似然估计量为 R ^ = n − k k 。 \widehat{R}=\frac{n-k}{k}。 R =knk


如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值