2.25设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn为取自 Γ \Gamma Γ分布族
{ Γ ( α , λ ) , λ > 0 } \{\Gamma(\alpha,\lambda),\lambda>0\} {Γ(α,λ),λ>0} α \alpha α已知,的简单随机样本,试证明 X ˉ / α \bar{X}/\alpha Xˉ/α是 g ( λ ) = 1 / λ g(\lambda)= 1/\lambda g(λ)=1/λ的一致最小方差无偏估计。
参考答案:
设 x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn是对应 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn的样本值。
总体
ξ
=
d
Γ
(
α
,
λ
)
,
λ
>
0
\xi\stackrel{d}{=}\Gamma(\alpha,\lambda),\lambda>0
ξ=dΓ(α,λ),λ>0
有
E
ξ
=
α
λ
,
V
a
r
ξ
=
α
λ
E\xi=\frac{\alpha}{\lambda},Var\xi=\frac{\alpha}{\lambda}
Eξ=λα,Varξ=λα
则
E
X
ˉ
α
=
1
α
E
X
ˉ
=
1
α
E
X
=
1
λ
=
g
(
λ
)
E\frac{\bar{X}}{\alpha}=\frac{1}{\alpha}E\bar{X}=\frac{1}{\alpha}EX=\frac{1}{\lambda}=g(\lambda)
EαXˉ=α1EXˉ=α1EX=λ1=g(λ)
即
X
ˉ
α
\frac{\bar{X}}{\alpha}
αXˉ是
g
(
λ
)
=
1
λ
g(\lambda)=\frac{1}{\lambda}
g(λ)=λ1的无偏估计。
且
V
a
r
X
ˉ
α
=
1
n
α
2
V
a
r
X
=
1
n
α
λ
2
Var\frac{\bar{X}}{\alpha}=\frac{1}{n\alpha^2}VarX=\frac{1}{n\alpha\lambda^2}
VarαXˉ=nα21VarX=nαλ21
总体
ξ
\xi
ξ的密度函数为
p
(
ξ
;
λ
)
=
λ
α
Γ
(
α
)
ξ
α
−
1
e
−
λ
ξ
I
(
0
,
∞
)
(
ξ
)
p(\xi;\lambda)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\xi^{\alpha-1}e^{-\lambda\xi}I_{(0,\infty)}(\xi)
p(ξ;λ)=Γ(α)λαξα−1e−λξI(0,∞)(ξ)
似然函数为
L
(
λ
)
=
{
λ
n
α
Γ
n
(
α
)
(
∏
i
=
1
n
x
i
)
α
−
1
e
−
λ
∑
i
=
1
n
x
i
,
x
i
>
0
0
,
x
i
≤
0
L(\lambda)=\left\{ \begin{aligned} \frac{\lambda^{n\alpha}}{\Gamma^n(\alpha)}(\prod\limits_{i=1}^nx_i)^{\alpha-1}e^{-\lambda\sum\limits_{i=1}^nx_i}&,x_i>0\\ 0\qquad &,x_i \le 0 \end{aligned} \right.
L(λ)=⎩⎪⎪⎨⎪⎪⎧Γn(α)λnα(i=1∏nxi)α−1e−λi=1∑nxi0,xi>0,xi≤0
(
i
=
1
,
⋯
,
n
)
(i=1,\cdots,n)
(i=1,⋯,n)
对数似然函数为
l
(
λ
)
=
ln
L
(
λ
)
=
n
α
ln
λ
−
n
ln
Γ
(
α
)
+
(
α
−
1
)
∑
i
=
1
n
ln
x
i
−
λ
∑
i
=
1
n
x
i
\begin{array}{rl}& l(\lambda)=\ln L(\lambda)\\&=n\alpha\ln\lambda-n\ln\Gamma(\alpha)\\&+(\alpha-1)\sum\limits_{i=1}^{n}\ln x_i-\lambda\sum\limits_{i=1}^{n}x_i\end{array}
l(λ)=lnL(λ)=nαlnλ−nlnΓ(α)+(α−1)i=1∑nlnxi−λi=1∑nxi
则
d
l
(
λ
)
d
λ
=
n
α
λ
−
∑
i
=
1
n
x
i
,
d
2
l
(
λ
)
d
λ
2
=
−
n
α
λ
2
\frac{dl(\lambda)}{d\lambda}=\frac{n\alpha}{\lambda}-\sum\limits_{i=1}^{n}x_i,\frac{d^2l(\lambda)}{d\lambda^2}=-\frac{n\alpha}{\lambda^2}
dλdl(λ)=λnα−i=1∑nxi,dλ2d2l(λ)=−λ2nα
I X ( λ ) = E ( − d 2 l ( λ ) d λ 2 ) = n α λ 2 I_X(\lambda)=E(-\frac{d^2l(\lambda)}{d\lambda^2})=\frac{n\alpha}{\lambda^2} IX(λ)=E(−dλ2d2l(λ))=λ2nα
因为
V
a
r
X
ˉ
α
=
[
g
′
(
λ
)
]
2
I
X
(
λ
)
Var\frac{\bar{X}}{\alpha}=\frac{[g'(\lambda)]^2}{I_X(\lambda)}
VarαXˉ=IX(λ)[g′(λ)]2
所以
X
ˉ
/
α
\bar{X}/\alpha
Xˉ/α作为
g
(
λ
)
=
1
/
λ
g(\lambda)= 1/\lambda
g(λ)=1/λ的无偏估计其方差达到了
C
−
R
C-R
C−R下界,且
X
ˉ
/
α
\bar{X}/\alpha
Xˉ/α是
g
(
λ
)
=
1
/
λ
g(\lambda)= 1/\lambda
g(λ)=1/λ的一致最小方差无偏估计。
2.26设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn为取自几何分布 { P θ ( X = i ) = θ ( 1 − θ ) i − 1 , \{P_{\theta}(X=i)= \theta(1-\theta)^{i-1}, {Pθ(X=i)=θ(1−θ)i−1, i = 1 , 2 , ⋯ , θ ∈ ( 0 , 1 ) } i=1,2,\cdots,\theta\in(0,1)\} i=1,2,⋯,θ∈(0,1)}的简单随机样本。
(1)试证明统计量 T = ∑ i ≤ n X i T=\sum_{i\le n}X_i T=∑i≤nXi是 θ \theta θ的充分完备统计量,服从Pascal分布:
P θ ( T = t ) = ( t − 1 n − 1 ) θ n ( 1 − θ ) t − n , P_{\theta}(T=t)=\begin{pmatrix} t-1 \\n-1 \end{pmatrix}\theta^n(1-\theta)^{t-n}, Pθ(T=t)=(t−1n−1)θn(1−θ)t−n, t = n , n + 1 , n + 2 , ⋯ . t=n,n+1,n+2,\cdots. t=n,n+1,n+2,⋯.
参考答案:
总体 X X X的分布律为
P θ ( X = x ) = θ ( 1 − θ ) x − 1 , x = 1 , 2 , ⋯ , P_{\theta}(X=x)= \theta(1-\theta)^{x-1},x=1,2,\cdots, Pθ(X=x)=θ(1−θ)x−1,x=1,2,⋯, θ ∈ ( 0 , 1 ) \theta\in(0,1) θ∈(0,1)
样本的联合密度为
P ( X 1 = x 1 , X 2 = x 2 , ⋯ , X n = x n ) = θ ( 1 − θ ) x 1 − 1 θ ( 1 − θ ) x 2 − 1 ⋯ θ ( 1 − θ ) x n − 1 = θ n ( 1 − θ ) ∑ i = 1 n x i ( 1 − θ ) n = ( θ 1 − θ ) n exp { ∑ i = 1 n x i ln ( 1 − θ ) } \begin{array}{rl} & P(X_1=x_1,X_2=x_2,\cdots,X_n=x_n)\\ &=\theta(1-\theta)^{x_1-1}\theta(1-\theta)^{x_2-1}\\&\cdots\theta(1-\theta)^{x_n-1}\\ &=\frac{\theta^n(1-\theta)^{\sum\limits_{i=1}^nx_i}}{(1-\theta)^n}\\ &=(\frac{\theta}{1-\theta})^n\exp\{\sum\limits_{i=1}^nx_i\ln(1-\theta)\} \end{array} P(X1=x1,X2=x2,⋯,Xn=xn)=θ(1−θ)x1−1θ(1−θ)x2−1⋯θ(1−θ)xn−1=(1−θ)nθn(1−θ)i=1∑nxi=(1−θθ)nexp{i=1∑nxiln(1−θ)}
其中
C ( θ ) = ( θ 1 − θ ) n , h ( X 1 , ⋯ , X n ) = 1 , C(\theta)=(\frac{\theta}{1-\theta})^n,h(X_1,\cdots,X_n)=1, C(θ)=(1−θθ)n,h(X1,⋯,Xn)=1, T ( X 1 , ⋯ , X n ) = ∑ i = 1 n x i , b ( θ ) = ln ( 1 − θ ) T(X_1,\cdots,X_n)=\sum\limits_{i=1}^nx_i,b(\theta)=\ln(1-\theta) T(X1,⋯,Xn)=i=1∑nxi,b(θ)=ln(1−θ)
所以统计量 T = ∑ i = 1 n x i ( i ≤ n ) T=\sum\limits_{i=1}^nx_i(i\le n) T=i=1∑nxi(i≤n)是 θ \theta θ的充分完备统计量。
P
θ
(
T
=
t
)
=
P
θ
(
∑
i
=
1
n
x
i
)
=
C
P
(
X
1
=
x
1
,
X
2
=
x
2
,
⋯
,
X
n
−
1
=
x
n
−
1
,
X
n
=
t
−
x
1
−
⋯
−
x
n
−
1
)
=
C
θ
(
1
−
θ
)
x
1
−
1
θ
(
1
−
θ
)
x
2
−
1
⋯
θ
(
1
−
θ
)
x
n
−
1
−
1
θ
(
1
−
θ
)
t
−
x
1
−
⋯
−
x
n
−
1
−
1
=
C
θ
n
(
1
−
θ
)
t
−
n
,
\begin{array}{rl} & P_{\theta}(T=t)=P_{\theta}(\sum\limits_{i=1}^nx_i)\\ &=CP(X_1=x_1,X_2=x_2,\cdots,\\& X_{n-1}=x_{n-1},X_n=t-x_1-\cdots-x_{n-1})\\ &=C\theta(1-\theta)^{x_1-1}\theta(1-\theta)^{x_2-1}\\&\cdots\theta(1-\theta)^{x_{n-1}-1}\theta(1-\theta)^{t-x_1-\cdots-x_{n-1}-1}\\ &=C\theta^n(1-\theta)^{t-n}, \end{array}
Pθ(T=t)=Pθ(i=1∑nxi)=CP(X1=x1,X2=x2,⋯,Xn−1=xn−1,Xn=t−x1−⋯−xn−1)=Cθ(1−θ)x1−1θ(1−θ)x2−1⋯θ(1−θ)xn−1−1θ(1−θ)t−x1−⋯−xn−1−1=Cθn(1−θ)t−n,
C
为
系
数
C为系数
C为系数
系数C为
当
t
=
n
时
,
C
n
t
−
n
=
C
n
0
=
C
n
−
1
n
−
1
当t=n时,C_n^{t-n}=C_n^0=C_{n-1}^{n-1}
当t=n时,Cnt−n=Cn0=Cn−1n−1
当
t
=
n
+
1
时
,
C
n
t
−
n
=
C
n
1
=
C
n
n
−
1
当t=n+1时,C_n^{t-n}=C_n^1=C_{n}^{n-1}
当t=n+1时,Cnt−n=Cn1=Cnn−1
当
t
=
n
+
2
时
,
C
n
t
−
n
+
C
n
t
−
n
−
1
=
C
n
2
+
C
n
1
=
C
n
+
1
n
−
1
当t=n+2时,C_n^{t-n}+C_n^{t-n-1}=C_n^2+C_n^1=C_{n+1}^{n-1}
当t=n+2时,Cnt−n+Cnt−n−1=Cn2+Cn1=Cn+1n−1
当
t
=
n
+
3
时
,
C
n
t
−
n
+
C
2
1
C
n
t
−
n
−
1
+
C
n
t
−
n
−
2
=
C
n
3
+
C
2
1
C
n
2
+
C
n
1
=
C
n
+
2
n
−
1
当t=n+3时,C_n^{t-n}+C_2^1C_n^{t-n-1}+C_n^{t-n-2}=C_n^3+C_2^1C_n^2+C_n^1=C_{n+2}^{n-1}
当t=n+3时,Cnt−n+C21Cnt−n−1+Cnt−n−2=Cn3+C21Cn2+Cn1=Cn+2n−1
当
t
=
n
+
4
时
,
C
n
t
−
n
+
C
3
1
C
n
t
−
n
−
1
+
(
C
2
0
+
C
2
1
)
C
n
t
−
n
−
2
+
C
n
t
−
n
−
3
=
C
n
4
+
C
3
1
C
n
3
+
(
C
2
0
+
C
2
1
)
C
n
2
+
C
n
1
=
C
n
+
3
n
−
1
当t=n+4时,C_n^{t-n}+C_3^1C_n^{t-n-1}+(C_2^0+C_2^1)C_n^{t-n-2}+C_n^{t-n-3}=C_n^4+C_3^1C_n^3+(C_2^0+C_2^1)C_n^2+C_n^1=C_{n+3}^{n-1}
当t=n+4时,Cnt−n+C31Cnt−n−1+(C20+C21)Cnt−n−2+Cnt−n−3=Cn4+C31Cn3+(C20+C21)Cn2+Cn1=Cn+3n−1
依此类推,系数为
C = C t − 1 n − 1 = ( t − 1 n − 1 ) C=C_{t-1}^{n-1}=\begin{pmatrix} t-1 \\n-1 \end{pmatrix} C=Ct−1n−1=(t−1n−1)
所以,统计量 T = ∑ i ≤ n X i T=\sum_{i\le n}X_i T=∑i≤nXi服从Pascal分布:
P θ ( T = t ) = ( t − 1 n − 1 ) θ n ( 1 − θ ) t − n , P_{\theta}(T=t)=\begin{pmatrix} t-1 \\n-1 \end{pmatrix}\theta^n(1-\theta)^{t-n}, Pθ(T=t)=(t−1n−1)θn(1−θ)t−n, t = n , n + 1 , n + 2 , ⋯ . t=n,n+1,n+2,\cdots. t=n,n+1,n+2,⋯.
设总体
X
X
X的分布密度
f
(
x
;
θ
)
f(x;\theta)
f(x;θ)为指数型分布族,即样本的联合密度具有如下形式:
∏
i
=
1
n
f
(
x
i
;
θ
)
=
C
(
θ
)
exp
{
∑
j
=
1
m
b
j
(
θ
)
T
j
(
x
1
,
⋯
,
x
n
)
}
h
(
X
1
,
⋯
,
X
n
)
\begin{array}{rl}&\prod\limits_{i=1}^{n}f(x_i;\theta)\\&=C(\theta)\exp\{\sum\limits_{j=1}^{m}b_j(\theta)T_j(x_1,\cdots,x_n)\}\\& h(X_1,\cdots,X_n)\end{array}
i=1∏nf(xi;θ)=C(θ)exp{j=1∑mbj(θ)Tj(x1,⋯,xn)}h(X1,⋯,Xn)
且对于
f
(
x
;
θ
)
f(x;\theta)
f(x;θ)的支撑
{
x
:
f
(
x
;
θ
)
>
0
}
\{x:f(x;\theta)>0\}
{x:f(x;θ)>0}不依赖于
θ
\theta
θ。
其中
θ
=
(
θ
1
,
⋯
,
θ
m
)
T
,
θ
∈
Θ
\theta=(\theta_1,\cdots,\theta_m)^T,\theta\in\Theta
θ=(θ1,⋯,θm)T,θ∈Θ。
如果
Θ
\Theta
Θ中包含有一个
m
m
m维矩形,而且
B
=
(
b
1
(
θ
)
,
⋯
,
b
m
(
θ
)
)
T
B=(b_1(\theta),\cdots,b_m(\theta))^T
B=(b1(θ),⋯,bm(θ))T的值域包含一个
m
m
m维开集,则
T
=
(
T
1
(
X
1
,
⋯
,
X
n
)
,
⋯
,
T
m
(
X
1
,
⋯
,
X
n
)
)
T
T=(T_1(X_1,\cdots,X_n),\cdots,T_m(X_1,\cdots,X_n))^T
T=(T1(X1,⋯,Xn),⋯,Tm(X1,⋯,Xn))T
是参数
θ
=
(
θ
1
,
⋯
,
θ
m
)
T
\theta=(\theta_1,\cdots,\theta_m)^T
θ=(θ1,⋯,θm)T的充分完备统计量。
(2)计算 E θ [ T ] E_{\theta}[T] Eθ[T],并由此求得 θ − 1 \theta^{-1} θ−1的一致最小方差无偏估计。
参考答案:
E θ [ T ] = ∑ i = 1 n E θ [ X i ] = ∑ i = 1 n i θ ( 1 − θ ) i − 1 = θ [ ( 1 − θ ) 0 + 2 ( 1 − θ ) 1 + 3 ( 1 − θ ) 2 + ⋯ + n ( 1 − θ ) n − 1 ] = − θ [ ( 1 − θ ) 1 + ( 1 − θ ) 2 + ( 1 − θ ) 3 + ⋯ + ( 1 − θ ) n ] ′ = − θ ( 1 − θ θ ) ′ = 1 θ \begin{array}{rl} E_{\theta}[T]&=\sum\limits_{i=1}^nE_{\theta}[X_i]=\sum\limits_{i=1}^n i\theta(1-\theta)^{i-1}\\ &=\theta[(1-\theta)^0+2(1-\theta)^1+\\& 3(1-\theta)^2+\cdots+n(1-\theta)^{n-1}]\\ &=-\theta[(1-\theta)^1+(1-\theta)^2\\&+(1-\theta)^3+\cdots+(1-\theta)^n]'\\ &=-\theta(\frac{1-\theta}{\theta})'\\ &=\frac{1}{\theta} \end{array} Eθ[T]=i=1∑nEθ[Xi]=i=1∑niθ(1−θ)i−1=θ[(1−θ)0+2(1−θ)1+3(1−θ)2+⋯+n(1−θ)n−1]=−θ[(1−θ)1+(1−θ)2+(1−θ)3+⋯+(1−θ)n]′=−θ(θ1−θ)′=θ1
因为统计量 T T T是充分完备统计量,且 T T T是 θ − 1 \theta^{-1} θ−1的无偏估计,所以 T T T是 θ − 1 \theta^{-1} θ−1的一致最小方差无偏估计。
(3)试证明
ψ ( X 1 ) = { 1 , X 1 = 1 , 0 , X 1 = 2 , 3 , ⋯ \psi(X_1)=\left\{ \begin{aligned} 1&,X_1= 1,\\ 0&,X_1= 2,3,\cdots \end{aligned} \right. ψ(X1)={10,X1=1,,X1=2,3,⋯
是 θ \theta θ的无偏估计。计算 E θ [ ψ ( X 1 ) ∣ T = t ] E_{\theta}[\psi(X_1)|T=t] Eθ[ψ(X1)∣T=t],并由此求得 θ \theta θ的一致最小方差无偏估计。
参考答案:
E [ ψ ( X 1 ) ] = 1 ⋅ P ( X 1 = 1 ) + 0 ⋅ [ P ( X 1 = 2 ) + P ( X 1 = 3 ) + ⋯ ] = θ ( 1 − θ ) 1 − 1 = θ \begin{array}{rl} &E[\psi(X_1)]\\ &=1\cdot P(X_1=1)+0\cdot[P(X_1=2)\\&+P(X_1=3)+\cdots]\\ &=\theta(1-\theta)^{1-1}\\ &=\theta \end{array} E[ψ(X1)]=1⋅P(X1=1)+0⋅[P(X1=2)+P(X1=3)+⋯]=θ(1−θ)1−1=θ
所以,
ψ ( X 1 ) = { 1 , X 1 = 1 , 0 , X 1 = 2 , 3 , ⋯ \psi(X_1)=\left\{ \begin{aligned} 1&,X_1= 1,\\ 0&,X_1= 2,3,\cdots \end{aligned} \right. ψ(X1)={10,X1=1,,X1=2,3,⋯
是 θ \theta θ的无偏估计。
E θ [ ψ ( X 1 ) ∣ T = t ] = E θ [ ψ ( X 1 ) ∣ ∑ i = 1 n X i = t ] = 1 ⋅ P ( X 1 = 1 ∣ ∑ i = 1 n X i = t ) + 0 ⋅ [ P ( X 1 = 2 ∣ ∑ i = 1 n X i = t ) + P ( X 1 = 3 ∣ ∑ i = 1 n X i = t ) + ⋯ ] = P ( X 1 = 1 , ∑ i = 2 n X i = t − 1 ) P ( ∑ i = 1 n X i = t ) = θ C t − 2 n − 2 θ n − 1 ( 1 − θ ) ( t − 1 ) − ( n − 1 ) C t − 1 n − 1 θ n ( 1 − θ ) t − n = n − 1 t − 1 = n − 1 ∑ i = 1 n X i − 1 \begin{array}{rl} &E_{\theta}[\psi(X_1)|T=t]\\ &=E_{\theta}[\psi(X_1)|\sum\limits_{i=1}^nX_i=t]\\ &=1\cdot P(X_1=1|\sum\limits_{i=1}^nX_i=t)\\&+0\cdot[P(X_1=2|\sum\limits_{i=1}^nX_i=t)\\&+P(X_1=3|\sum\limits_{i=1}^nX_i=t)+\cdots]\\ &=\frac{P(X_1=1,\sum\limits_{i=2}^nX_i=t-1)}{P(\sum\limits_{i=1}^nX_i=t)}\\ &=\frac{\theta C_{t-2}^{n-2}\theta^{n-1}(1-\theta)^{(t-1)-(n-1)}}{C_{t-1}^{n-1}\theta^n(1-\theta)^{t-n}}\\ &=\frac{n-1}{t-1}\\ &=\frac{n-1}{\sum\limits_{i=1}^nX_i-1} \end{array} Eθ[ψ(X1)∣T=t]=Eθ[ψ(X1)∣i=1∑nXi=t]=1⋅P(X1=1∣i=1∑nXi=t)+0⋅[P(X1=2∣i=1∑nXi=t)+P(X1=3∣i=1∑nXi=t)+⋯]=P(i=1∑nXi=t)P(X1=1,i=2∑nXi=t−1)=Ct−1n−1θn(1−θ)t−nθCt−2n−2θn−1(1−θ)(t−1)−(n−1)=t−1n−1=i=1∑nXi−1n−1
由 L e h m a n n − S c h e f f e ˊ Lehmann-Scheff\acute{e} Lehmann−Scheffeˊ定理, T T T是几何分布族 { P θ ( X = i ) = θ ( 1 − θ ) i − 1 , i = 1 , 2 , ⋯ , \{P_{\theta}(X=i)= \theta(1-\theta)^{i-1},i=1,2,\cdots, {Pθ(X=i)=θ(1−θ)i−1,i=1,2,⋯, θ ∈ ( 0 , 1 ) } \theta\in(0,1)\} θ∈(0,1)}参数 θ \theta θ的充分完备统计量, ψ ( X 1 ) \psi(X_1) ψ(X1)是 θ \theta θ的方差有限的无偏估计,则 E θ [ ψ ( X 1 ) ∣ T = t ] E_{\theta}[\psi(X_1)|T=t] Eθ[ψ(X1)∣T=t]为 θ \theta θ的唯一的一致最小无偏估计,即 θ \theta θ的一致最小方差无偏估计为 n − 1 ∑ i = 1 n X i − 1 \frac{n-1}{\sum\limits_{i=1}^nX_i-1} i=1∑nXi−1n−1。
求UMVUE的方法:
(1)若$T$是充分完备统计量,且$h(T)$是$g(\theta)$的无偏估计,所以$h(T)$是$g(\theta)$的一致最小方差无偏估计。(2) L e h m a n n − S c h e f f e ˊ Lehmann-Scheff\acute{e} Lehmann−Scheffeˊ定理, T T T是参数 θ \theta θ的充分完备统计量, ψ ( X 1 ) \psi(X_1) ψ(X1)是 g ( θ ) g(\theta) g(θ)的方差有限的无偏估计,则 E θ [ ψ ( X 1 ) ∣ T ] E_{\theta}[\psi(X_1)|T] Eθ[ψ(X1)∣T]为 g ( θ ) g(\theta) g(θ)的唯一的一致最小无偏估计。
(3)若 g ^ ∗ \widehat{g}^* g ∗为参数函数 g ( θ ) g(\theta) g(θ)的无偏估计,且对 g ( θ ) g(\theta) g(θ)的任一无偏估计 g ^ \widehat{g} g 都成立 V a r θ [ g ^ ∗ ] ≤ V a r θ [ g ^ ] , ∀ θ ∈ Θ Var_{\theta}[\widehat{g}^*]\le Var_{\theta}[\widehat{g}],\qquad \forall\theta\in\Theta Varθ[g ∗]≤Varθ[g ],∀θ∈Θ则称 g ^ ∗ \widehat{g}^* g ∗为参数函数 g ( θ ) g(\theta) g(θ)的UMVUE。
(4)由C-R不等式知,无偏估计的方差不低于C-R下界,因此,若某个无偏估计的方差达到了C-R下界,则它必是一个UMVUE。
如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!