数理统计讲义第二章课后答案12

2.25设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为取自 Γ \Gamma Γ分布族
{ Γ ( α , λ ) , λ > 0 } \{\Gamma(\alpha,\lambda),\lambda>0\} {Γ(α,λ),λ>0} α \alpha α已知,的简单随机样本,试证明 X ˉ / α \bar{X}/\alpha Xˉ/α g ( λ ) = 1 / λ g(\lambda)= 1/\lambda g(λ)=1/λ的一致最小方差无偏估计。

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体 ξ = d Γ ( α , λ ) , λ > 0 \xi\stackrel{d}{=}\Gamma(\alpha,\lambda),\lambda>0 ξ=dΓ(α,λ),λ>0
E ξ = α λ , V a r ξ = α λ E\xi=\frac{\alpha}{\lambda},Var\xi=\frac{\alpha}{\lambda} Eξ=λα,Varξ=λα
E X ˉ α = 1 α E X ˉ = 1 α E X = 1 λ = g ( λ ) E\frac{\bar{X}}{\alpha}=\frac{1}{\alpha}E\bar{X}=\frac{1}{\alpha}EX=\frac{1}{\lambda}=g(\lambda) EαXˉ=α1EXˉ=α1EX=λ1=g(λ)
X ˉ α \frac{\bar{X}}{\alpha} αXˉ g ( λ ) = 1 λ g(\lambda)=\frac{1}{\lambda} g(λ)=λ1的无偏估计。

V a r X ˉ α = 1 n α 2 V a r X = 1 n α λ 2 Var\frac{\bar{X}}{\alpha}=\frac{1}{n\alpha^2}VarX=\frac{1}{n\alpha\lambda^2} VarαXˉ=nα21VarX=nαλ21

总体 ξ \xi ξ的密度函数为 p ( ξ ; λ ) = λ α Γ ( α ) ξ α − 1 e − λ ξ I ( 0 , ∞ ) ( ξ ) p(\xi;\lambda)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\xi^{\alpha-1}e^{-\lambda\xi}I_{(0,\infty)}(\xi) p(ξ;λ)=Γ(α)λαξα1eλξI(0,)(ξ)
似然函数为
L ( λ ) = { λ n α Γ n ( α ) ( ∏ i = 1 n x i ) α − 1 e − λ ∑ i = 1 n x i , x i > 0 0 , x i ≤ 0 L(\lambda)=\left\{ \begin{aligned} \frac{\lambda^{n\alpha}}{\Gamma^n(\alpha)}(\prod\limits_{i=1}^nx_i)^{\alpha-1}e^{-\lambda\sum\limits_{i=1}^nx_i}&,x_i>0\\ 0\qquad &,x_i \le 0 \end{aligned} \right. L(λ)=Γn(α)λnα(i=1nxi)α1eλi=1nxi0,xi>0,xi0 ( i = 1 , ⋯   , n ) (i=1,\cdots,n) (i=1,,n)

对数似然函数为

l ( λ ) = ln ⁡ L ( λ ) = n α ln ⁡ λ − n ln ⁡ Γ ( α ) + ( α − 1 ) ∑ i = 1 n ln ⁡ x i − λ ∑ i = 1 n x i \begin{array}{rl}& l(\lambda)=\ln L(\lambda)\\&=n\alpha\ln\lambda-n\ln\Gamma(\alpha)\\&+(\alpha-1)\sum\limits_{i=1}^{n}\ln x_i-\lambda\sum\limits_{i=1}^{n}x_i\end{array} l(λ)=lnL(λ)=nαlnλnlnΓ(α)+(α1)i=1nlnxiλi=1nxi

d l ( λ ) d λ = n α λ − ∑ i = 1 n x i , d 2 l ( λ ) d λ 2 = − n α λ 2 \frac{dl(\lambda)}{d\lambda}=\frac{n\alpha}{\lambda}-\sum\limits_{i=1}^{n}x_i,\frac{d^2l(\lambda)}{d\lambda^2}=-\frac{n\alpha}{\lambda^2} dλdl(λ)=λnαi=1nxi,dλ2d2l(λ)=λ2nα

I X ( λ ) = E ( − d 2 l ( λ ) d λ 2 ) = n α λ 2 I_X(\lambda)=E(-\frac{d^2l(\lambda)}{d\lambda^2})=\frac{n\alpha}{\lambda^2} IX(λ)=E(dλ2d2l(λ))=λ2nα

因为
V a r X ˉ α = [ g ′ ( λ ) ] 2 I X ( λ ) Var\frac{\bar{X}}{\alpha}=\frac{[g'(\lambda)]^2}{I_X(\lambda)} VarαXˉ=IX(λ)[g(λ)]2

所以
X ˉ / α \bar{X}/\alpha Xˉ/α作为 g ( λ ) = 1 / λ g(\lambda)= 1/\lambda g(λ)=1/λ的无偏估计其方差达到了 C − R C-R CR下界,且 X ˉ / α \bar{X}/\alpha Xˉ/α g ( λ ) = 1 / λ g(\lambda)= 1/\lambda g(λ)=1/λ的一致最小方差无偏估计。


2.26设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为取自几何分布 { P θ ( X = i ) = θ ( 1 − θ ) i − 1 , \{P_{\theta}(X=i)= \theta(1-\theta)^{i-1}, {Pθ(X=i)=θ(1θ)i1, i = 1 , 2 , ⋯   , θ ∈ ( 0 , 1 ) } i=1,2,\cdots,\theta\in(0,1)\} i=1,2,,θ(0,1)}的简单随机样本。

(1)试证明统计量 T = ∑ i ≤ n X i T=\sum_{i\le n}X_i T=inXi θ \theta θ的充分完备统计量,服从Pascal分布:
P θ ( T = t ) = ( t − 1 n − 1 ) θ n ( 1 − θ ) t − n , P_{\theta}(T=t)=\begin{pmatrix} t-1 \\n-1 \end{pmatrix}\theta^n(1-\theta)^{t-n}, Pθ(T=t)=(t1n1)θn(1θ)tn, t = n , n + 1 , n + 2 , ⋯   . t=n,n+1,n+2,\cdots. t=n,n+1,n+2,.

参考答案:

总体 X X X的分布律为

P θ ( X = x ) = θ ( 1 − θ ) x − 1 , x = 1 , 2 , ⋯   , P_{\theta}(X=x)= \theta(1-\theta)^{x-1},x=1,2,\cdots, Pθ(X=x)=θ(1θ)x1,x=1,2,, θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)

样本的联合密度为

P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n ) = θ ( 1 − θ ) x 1 − 1 θ ( 1 − θ ) x 2 − 1 ⋯ θ ( 1 − θ ) x n − 1 = θ n ( 1 − θ ) ∑ i = 1 n x i ( 1 − θ ) n = ( θ 1 − θ ) n exp ⁡ { ∑ i = 1 n x i ln ⁡ ( 1 − θ ) } \begin{array}{rl} & P(X_1=x_1,X_2=x_2,\cdots,X_n=x_n)\\ &=\theta(1-\theta)^{x_1-1}\theta(1-\theta)^{x_2-1}\\&\cdots\theta(1-\theta)^{x_n-1}\\ &=\frac{\theta^n(1-\theta)^{\sum\limits_{i=1}^nx_i}}{(1-\theta)^n}\\ &=(\frac{\theta}{1-\theta})^n\exp\{\sum\limits_{i=1}^nx_i\ln(1-\theta)\} \end{array} P(X1=x1,X2=x2,,Xn=xn)=θ(1θ)x11θ(1θ)x21θ(1θ)xn1=(1θ)nθn(1θ)i=1nxi=(1θθ)nexp{i=1nxiln(1θ)}

其中

C ( θ ) = ( θ 1 − θ ) n , h ( X 1 , ⋯   , X n ) = 1 , C(\theta)=(\frac{\theta}{1-\theta})^n,h(X_1,\cdots,X_n)=1, C(θ)=(1θθ)n,h(X1,,Xn)=1, T ( X 1 , ⋯   , X n ) = ∑ i = 1 n x i , b ( θ ) = ln ⁡ ( 1 − θ ) T(X_1,\cdots,X_n)=\sum\limits_{i=1}^nx_i,b(\theta)=\ln(1-\theta) T(X1,,Xn)=i=1nxi,b(θ)=ln(1θ)

所以统计量 T = ∑ i = 1 n x i ( i ≤ n ) T=\sum\limits_{i=1}^nx_i(i\le n) T=i=1nxi(in) θ \theta θ的充分完备统计量。

P θ ( T = t ) = P θ ( ∑ i = 1 n x i ) = C P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X n − 1 = x n − 1 , X n = t − x 1 − ⋯ − x n − 1 ) = C θ ( 1 − θ ) x 1 − 1 θ ( 1 − θ ) x 2 − 1 ⋯ θ ( 1 − θ ) x n − 1 − 1 θ ( 1 − θ ) t − x 1 − ⋯ − x n − 1 − 1 = C θ n ( 1 − θ ) t − n , \begin{array}{rl} & P_{\theta}(T=t)=P_{\theta}(\sum\limits_{i=1}^nx_i)\\ &=CP(X_1=x_1,X_2=x_2,\cdots,\\& X_{n-1}=x_{n-1},X_n=t-x_1-\cdots-x_{n-1})\\ &=C\theta(1-\theta)^{x_1-1}\theta(1-\theta)^{x_2-1}\\&\cdots\theta(1-\theta)^{x_{n-1}-1}\theta(1-\theta)^{t-x_1-\cdots-x_{n-1}-1}\\ &=C\theta^n(1-\theta)^{t-n}, \end{array} Pθ(T=t)=Pθ(i=1nxi)=CP(X1=x1,X2=x2,,Xn1=xn1,Xn=tx1xn1)=Cθ(1θ)x11θ(1θ)x21θ(1θ)xn11θ(1θ)tx1xn11=Cθn(1θ)tn,
C 为 系 数 C为系数 C

系数C为

当 t = n 时 , C n t − n = C n 0 = C n − 1 n − 1 当t=n时,C_n^{t-n}=C_n^0=C_{n-1}^{n-1} t=n,Cntn=Cn0=Cn1n1
当 t = n + 1 时 , C n t − n = C n 1 = C n n − 1 当t=n+1时,C_n^{t-n}=C_n^1=C_{n}^{n-1} t=n+1,Cntn=Cn1=Cnn1
当 t = n + 2 时 , C n t − n + C n t − n − 1 = C n 2 + C n 1 = C n + 1 n − 1 当t=n+2时,C_n^{t-n}+C_n^{t-n-1}=C_n^2+C_n^1=C_{n+1}^{n-1} t=n+2,Cntn+Cntn1=Cn2+Cn1=Cn+1n1
当 t = n + 3 时 , C n t − n + C 2 1 C n t − n − 1 + C n t − n − 2 = C n 3 + C 2 1 C n 2 + C n 1 = C n + 2 n − 1 当t=n+3时,C_n^{t-n}+C_2^1C_n^{t-n-1}+C_n^{t-n-2}=C_n^3+C_2^1C_n^2+C_n^1=C_{n+2}^{n-1} t=n+3,Cntn+C21Cntn1+Cntn2=Cn3+C21Cn2+Cn1=Cn+2n1
当 t = n + 4 时 , C n t − n + C 3 1 C n t − n − 1 + ( C 2 0 + C 2 1 ) C n t − n − 2 + C n t − n − 3 = C n 4 + C 3 1 C n 3 + ( C 2 0 + C 2 1 ) C n 2 + C n 1 = C n + 3 n − 1 当t=n+4时,C_n^{t-n}+C_3^1C_n^{t-n-1}+(C_2^0+C_2^1)C_n^{t-n-2}+C_n^{t-n-3}=C_n^4+C_3^1C_n^3+(C_2^0+C_2^1)C_n^2+C_n^1=C_{n+3}^{n-1} t=n+4,Cntn+C31Cntn1+(C20+C21)Cntn2+Cntn3=Cn4+C31Cn3+(C20+C21)Cn2+Cn1=Cn+3n1

依此类推,系数为

C = C t − 1 n − 1 = ( t − 1 n − 1 ) C=C_{t-1}^{n-1}=\begin{pmatrix} t-1 \\n-1 \end{pmatrix} C=Ct1n1=(t1n1)

所以,统计量 T = ∑ i ≤ n X i T=\sum_{i\le n}X_i T=inXi服从Pascal分布:

P θ ( T = t ) = ( t − 1 n − 1 ) θ n ( 1 − θ ) t − n , P_{\theta}(T=t)=\begin{pmatrix} t-1 \\n-1 \end{pmatrix}\theta^n(1-\theta)^{t-n}, Pθ(T=t)=(t1n1)θn(1θ)tn, t = n , n + 1 , n + 2 , ⋯   . t=n,n+1,n+2,\cdots. t=n,n+1,n+2,.

设总体 X X X的分布密度 f ( x ; θ ) f(x;\theta) f(x;θ)为指数型分布族,即样本的联合密度具有如下形式:
∏ i = 1 n f ( x i ; θ ) = C ( θ ) exp ⁡ { ∑ j = 1 m b j ( θ ) T j ( x 1 , ⋯   , x n ) } h ( X 1 , ⋯   , X n ) \begin{array}{rl}&\prod\limits_{i=1}^{n}f(x_i;\theta)\\&=C(\theta)\exp\{\sum\limits_{j=1}^{m}b_j(\theta)T_j(x_1,\cdots,x_n)\}\\& h(X_1,\cdots,X_n)\end{array} i=1nf(xi;θ)=C(θ)exp{j=1mbj(θ)Tj(x1,,xn)}h(X1,,Xn)
且对于 f ( x ; θ ) f(x;\theta) f(x;θ)的支撑 { x : f ( x ; θ ) > 0 } \{x:f(x;\theta)>0\} {x:f(x;θ)>0}不依赖于 θ \theta θ
其中 θ = ( θ 1 , ⋯   , θ m ) T , θ ∈ Θ \theta=(\theta_1,\cdots,\theta_m)^T,\theta\in\Theta θ=(θ1,,θm)T,θΘ
如果 Θ \Theta Θ中包含有一个 m m m维矩形,而且 B = ( b 1 ( θ ) , ⋯   , b m ( θ ) ) T B=(b_1(\theta),\cdots,b_m(\theta))^T B=(b1(θ),,bm(θ))T的值域包含一个 m m m维开集,则 T = ( T 1 ( X 1 , ⋯   , X n ) , ⋯   , T m ( X 1 , ⋯   , X n ) ) T T=(T_1(X_1,\cdots,X_n),\cdots,T_m(X_1,\cdots,X_n))^T T=(T1(X1,,Xn),,Tm(X1,,Xn))T
是参数 θ = ( θ 1 , ⋯   , θ m ) T \theta=(\theta_1,\cdots,\theta_m)^T θ=(θ1,,θm)T的充分完备统计量。


(2)计算 E θ [ T ] E_{\theta}[T] Eθ[T],并由此求得 θ − 1 \theta^{-1} θ1的一致最小方差无偏估计。

参考答案:

E θ [ T ] = ∑ i = 1 n E θ [ X i ] = ∑ i = 1 n i θ ( 1 − θ ) i − 1 = θ [ ( 1 − θ ) 0 + 2 ( 1 − θ ) 1 + 3 ( 1 − θ ) 2 + ⋯ + n ( 1 − θ ) n − 1 ] = − θ [ ( 1 − θ ) 1 + ( 1 − θ ) 2 + ( 1 − θ ) 3 + ⋯ + ( 1 − θ ) n ] ′ = − θ ( 1 − θ θ ) ′ = 1 θ \begin{array}{rl} E_{\theta}[T]&=\sum\limits_{i=1}^nE_{\theta}[X_i]=\sum\limits_{i=1}^n i\theta(1-\theta)^{i-1}\\ &=\theta[(1-\theta)^0+2(1-\theta)^1+\\& 3(1-\theta)^2+\cdots+n(1-\theta)^{n-1}]\\ &=-\theta[(1-\theta)^1+(1-\theta)^2\\&+(1-\theta)^3+\cdots+(1-\theta)^n]'\\ &=-\theta(\frac{1-\theta}{\theta})'\\ &=\frac{1}{\theta} \end{array} Eθ[T]=i=1nEθ[Xi]=i=1niθ(1θ)i1=θ[(1θ)0+2(1θ)1+3(1θ)2++n(1θ)n1]=θ[(1θ)1+(1θ)2+(1θ)3++(1θ)n]=θ(θ1θ)=θ1

因为统计量 T T T是充分完备统计量,且 T T T θ − 1 \theta^{-1} θ1的无偏估计,所以 T T T θ − 1 \theta^{-1} θ1的一致最小方差无偏估计。


(3)试证明
ψ ( X 1 ) = { 1 , X 1 = 1 , 0 , X 1 = 2 , 3 , ⋯ \psi(X_1)=\left\{ \begin{aligned} 1&,X_1= 1,\\ 0&,X_1= 2,3,\cdots \end{aligned} \right. ψ(X1)={10,X1=1,,X1=2,3,

θ \theta θ的无偏估计。计算 E θ [ ψ ( X 1 ) ∣ T = t ] E_{\theta}[\psi(X_1)|T=t] Eθ[ψ(X1)T=t],并由此求得 θ \theta θ的一致最小方差无偏估计。

参考答案:

E [ ψ ( X 1 ) ] = 1 ⋅ P ( X 1 = 1 ) + 0 ⋅ [ P ( X 1 = 2 ) + P ( X 1 = 3 ) + ⋯   ] = θ ( 1 − θ ) 1 − 1 = θ \begin{array}{rl} &E[\psi(X_1)]\\ &=1\cdot P(X_1=1)+0\cdot[P(X_1=2)\\&+P(X_1=3)+\cdots]\\ &=\theta(1-\theta)^{1-1}\\ &=\theta \end{array} E[ψ(X1)]=1P(X1=1)+0[P(X1=2)+P(X1=3)+]=θ(1θ)11=θ

所以,

ψ ( X 1 ) = { 1 , X 1 = 1 , 0 , X 1 = 2 , 3 , ⋯ \psi(X_1)=\left\{ \begin{aligned} 1&,X_1= 1,\\ 0&,X_1= 2,3,\cdots \end{aligned} \right. ψ(X1)={10,X1=1,,X1=2,3,

θ \theta θ的无偏估计。

E θ [ ψ ( X 1 ) ∣ T = t ] = E θ [ ψ ( X 1 ) ∣ ∑ i = 1 n X i = t ] = 1 ⋅ P ( X 1 = 1 ∣ ∑ i = 1 n X i = t ) + 0 ⋅ [ P ( X 1 = 2 ∣ ∑ i = 1 n X i = t ) + P ( X 1 = 3 ∣ ∑ i = 1 n X i = t ) + ⋯   ] = P ( X 1 = 1 , ∑ i = 2 n X i = t − 1 ) P ( ∑ i = 1 n X i = t ) = θ C t − 2 n − 2 θ n − 1 ( 1 − θ ) ( t − 1 ) − ( n − 1 ) C t − 1 n − 1 θ n ( 1 − θ ) t − n = n − 1 t − 1 = n − 1 ∑ i = 1 n X i − 1 \begin{array}{rl} &E_{\theta}[\psi(X_1)|T=t]\\ &=E_{\theta}[\psi(X_1)|\sum\limits_{i=1}^nX_i=t]\\ &=1\cdot P(X_1=1|\sum\limits_{i=1}^nX_i=t)\\&+0\cdot[P(X_1=2|\sum\limits_{i=1}^nX_i=t)\\&+P(X_1=3|\sum\limits_{i=1}^nX_i=t)+\cdots]\\ &=\frac{P(X_1=1,\sum\limits_{i=2}^nX_i=t-1)}{P(\sum\limits_{i=1}^nX_i=t)}\\ &=\frac{\theta C_{t-2}^{n-2}\theta^{n-1}(1-\theta)^{(t-1)-(n-1)}}{C_{t-1}^{n-1}\theta^n(1-\theta)^{t-n}}\\ &=\frac{n-1}{t-1}\\ &=\frac{n-1}{\sum\limits_{i=1}^nX_i-1} \end{array} Eθ[ψ(X1)T=t]=Eθ[ψ(X1)i=1nXi=t]=1P(X1=1i=1nXi=t)+0[P(X1=2i=1nXi=t)+P(X1=3i=1nXi=t)+]=P(i=1nXi=t)P(X1=1,i=2nXi=t1)=Ct1n1θn(1θ)tnθCt2n2θn1(1θ)(t1)(n1)=t1n1=i=1nXi1n1

L e h m a n n − S c h e f f e ˊ Lehmann-Scheff\acute{e} LehmannScheffeˊ定理, T T T是几何分布族 { P θ ( X = i ) = θ ( 1 − θ ) i − 1 , i = 1 , 2 , ⋯   , \{P_{\theta}(X=i)= \theta(1-\theta)^{i-1},i=1,2,\cdots, {Pθ(X=i)=θ(1θ)i1,i=1,2,, θ ∈ ( 0 , 1 ) } \theta\in(0,1)\} θ(0,1)}参数 θ \theta θ的充分完备统计量, ψ ( X 1 ) \psi(X_1) ψ(X1) θ \theta θ的方差有限的无偏估计,则 E θ [ ψ ( X 1 ) ∣ T = t ] E_{\theta}[\psi(X_1)|T=t] Eθ[ψ(X1)T=t] θ \theta θ的唯一的一致最小无偏估计,即 θ \theta θ的一致最小方差无偏估计为 n − 1 ∑ i = 1 n X i − 1 \frac{n-1}{\sum\limits_{i=1}^nX_i-1} i=1nXi1n1


求UMVUE的方法:

(1)若$T$是充分完备统计量,且$h(T)$是$g(\theta)$的无偏估计,所以$h(T)$是$g(\theta)$的一致最小方差无偏估计。

(2) L e h m a n n − S c h e f f e ˊ Lehmann-Scheff\acute{e} LehmannScheffeˊ定理, T T T是参数 θ \theta θ的充分完备统计量, ψ ( X 1 ) \psi(X_1) ψ(X1) g ( θ ) g(\theta) g(θ)的方差有限的无偏估计,则 E θ [ ψ ( X 1 ) ∣ T ] E_{\theta}[\psi(X_1)|T] Eθ[ψ(X1)T] g ( θ ) g(\theta) g(θ)的唯一的一致最小无偏估计。

(3)若 g ^ ∗ \widehat{g}^* g 为参数函数 g ( θ ) g(\theta) g(θ)的无偏估计,且对 g ( θ ) g(\theta) g(θ)的任一无偏估计 g ^ \widehat{g} g 都成立 V a r θ [ g ^ ∗ ] ≤ V a r θ [ g ^ ] , ∀ θ ∈ Θ Var_{\theta}[\widehat{g}^*]\le Var_{\theta}[\widehat{g}],\qquad \forall\theta\in\Theta Varθ[g ]Varθ[g ],θΘ则称 g ^ ∗ \widehat{g}^* g 为参数函数 g ( θ ) g(\theta) g(θ)的UMVUE。

(4)由C-R不等式知,无偏估计的方差不低于C-R下界,因此,若某个无偏估计的方差达到了C-R下界,则它必是一个UMVUE。


如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值