数理统计讲义第二章课后答案11

2.24判别下列分布族的完备性:

(1) P o i s s o n Poisson Poisson分布族。

参考答案:

对于 P o i s s o n Poisson Poisson分布族

{ p λ ( x ) = λ x x ! e − λ , x = 0 , 1 , 2 , ⋯   , λ > 0 } \{p_{\lambda}(x)=\frac{\lambda^x}{x!}e^{-\lambda},x=0,1,2,\cdots,\lambda>0\} {pλ(x)=x!λxeλ,x=0,1,2,,λ>0}

X = d P ( λ ) X\stackrel{d}{=}P(\lambda) X=dP(λ)

X X X的任一函数 ϕ ( X ) \phi(X) ϕ(X)满足

E λ ϕ ( X ) = ∑ x = 0 ∞ ϕ ( x ) λ x x ! e − λ = 0 , ∀ λ > 0 E_{\lambda}\phi(X)=\sum\limits_{x=0}^{\infty}\phi(x)\frac{\lambda^x}{x!}e^{-\lambda}=0,\forall\lambda>0 Eλϕ(X)=x=0ϕ(x)x!λxeλ=0,λ>0

可推出

∑ x = 0 ∞ ϕ ( x ) λ x x ! = 0 , ∀ λ > 0 \sum\limits_{x=0}^{\infty}\phi(x)\frac{\lambda^x}{x!}=0,\forall\lambda>0 x=0ϕ(x)x!λx=0,λ>0

因为当 x = 0 , 1 , 2 , ⋯   , λ > 0 x=0,1,2,\cdots,\lambda>0 x=0,1,2,,λ>0时,

λ x x ! > 0 \frac{\lambda^x}{x!}>0 x!λx>0

所以

ϕ ( x ) = 0 , a . s . P λ \phi(x)=0,a.s.P_{\lambda} ϕ(x)=0,a.s.Pλ

P λ ( ϕ ( X ) = 0 ) = 1 , ∀ λ > 0 P_{\lambda}(\phi(X)=0)=1,\forall\lambda>0 Pλ(ϕ(X)=0)=1,λ>0

因此, P o i s s o n Poisson Poisson分布族完备。


(2)几何分布族 { P θ ( X = k ) = ( 1 − θ ) θ k − 1 , k = 1 , 2 , ⋯   } \{P_{\theta}(X=k)=(1-\theta)\theta^{k-1},k=1,2,\cdots\} {Pθ(X=k)=(1θ)θk1,k=1,2,} θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)

参考答案:

对于几何分布族

{ p θ ( x ) = ( 1 − θ ) θ x − 1 , x = 1 , 2 , ⋯   } \{p_{\theta}(x)=(1-\theta)\theta^{x-1},x=1,2,\cdots\} {pθ(x)=(1θ)θx1,x=1,2,}
θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)

X X X服从该几何分布

X X X的任一函数 ϕ ( X ) \phi(X) ϕ(X)满足

E θ ϕ ( X ) = ∑ x = 1 ∞ ϕ ( x ) ( 1 − θ ) θ x − 1 = 0 , E_{\theta}\phi(X)=\sum\limits_{x=1}^{\infty}\phi(x)(1-\theta)\theta^{x-1}=0, Eθϕ(X)=x=1ϕ(x)(1θ)θx1=0, ∀ θ ∈ ( 0 , 1 ) \forall\theta\in(0,1) θ(0,1)

可推出

∑ x = 1 ∞ ϕ ( x ) θ x − 1 = 0 , ∀ θ ∈ ( 0 , 1 ) \sum\limits_{x=1}^{\infty}\phi(x)\theta^{x-1}=0,\forall\theta\in(0,1) x=1ϕ(x)θx1=0,θ(0,1)

因为当 x = 1 , 2 , ⋯   , θ ∈ ( 0 , 1 ) x=1,2,\cdots,\theta\in(0,1) x=1,2,,θ(0,1)时,

θ x − 1 > 0 \theta^{x-1}>0 θx1>0

所以

ϕ ( x ) = 0 , a . s . P θ \phi(x)=0,a.s.P_{\theta} ϕ(x)=0,a.s.Pθ

P θ ( ϕ ( X ) = 0 ) = 1 , ∀ θ ∈ ( 0 , 1 ) P_{\theta}(\phi(X)=0)=1,\forall\theta\in(0,1) Pθ(ϕ(X)=0)=1,θ(0,1)

因此,该几何分布族完备。


(2)'几何分布族 { P θ ( X = k ) = θ ( 1 − θ ) k , k = 0 , 1 , 2 , ⋯   } \{P_{\theta}(X=k)=\theta(1-\theta)^{k},k=0,1,2,\cdots\} {Pθ(X=k)=θ(1θ)k,k=0,1,2,} θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)

参考答案:

对于几何分布族

{ p θ ( x ) = θ ( 1 − θ ) x , x = 0 , 1 , 2 , ⋯   , } \{p_{\theta}(x)=\theta(1-\theta)^{x},x=0,1,2,\cdots,\} {pθ(x)=θ(1θ)x,x=0,1,2,,} θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)

X X X服从该几何分布

X X X的任一函数 ϕ ( X ) \phi(X) ϕ(X)满足

E θ ϕ ( X ) = ∑ x = 0 ∞ ϕ ( x ) θ ( 1 − θ ) x = 0 , E_{\theta}\phi(X)=\sum\limits_{x=0}^{\infty}\phi(x)\theta(1-\theta)^{x}=0, Eθϕ(X)=x=0ϕ(x)θ(1θ)x=0, ∀ θ ∈ ( 0 , 1 ) \forall\theta\in(0,1) θ(0,1)

可推出

∑ x = 0 ∞ ϕ ( x ) ( 1 − θ ) x = 0 , ∀ θ ∈ ( 0 , 1 ) \sum\limits_{x=0}^{\infty}\phi(x)(1-\theta)^{x}=0,\forall\theta\in(0,1) x=0ϕ(x)(1θ)x=0,θ(0,1)

因为当 x = 0 , 1 , 2 , ⋯   , θ ∈ ( 0 , 1 ) x=0,1,2,\cdots,\theta\in(0,1) x=0,1,2,,θ(0,1)时,

( 1 − θ ) x > 0 (1-\theta)^{x}>0 (1θ)x>0

所以

ϕ ( x ) = 0 , a . s . P θ \phi(x)=0,a.s.P_{\theta} ϕ(x)=0,a.s.Pθ

P θ ( ϕ ( X ) = 0 ) = 1 , ∀ θ ∈ ( 0 , 1 ) P_{\theta}(\phi(X)=0)=1,\forall\theta\in(0,1) Pθ(ϕ(X)=0)=1,θ(0,1)

因此,该几何分布族完备。


更多内容欢迎关注微信公众号:
小离数学考研

如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

  • 10
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值