数理统计讲义第二章课后答案10

2.22设总体 ξ \xi ξ是含未知参数 θ \theta θ的分布,其密度函数为 p ( x ; θ ) = 2 θ x 3 e − θ / x 2 I ( 0 , ∞ ) ( x ) , θ > 0. p(x;\theta)=\frac{2\theta}{x^3}e^{-\theta/x^2}I_{(0,\infty)}(x),\quad\theta>0. p(x;θ)=x32θeθ/x2I(0,)(x),θ>0. θ \theta θ F i s h e r Fisher Fisher信息量和当样本量为 n n n时, θ \theta θ无偏估计方差的 C − R C-R CR下界。

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体 ξ \xi ξ的密度函数为
p ( ξ ; θ ) = { 2 θ ξ 3 e − θ ξ 2 , x > 0 0 , x ≤ 0 ( θ > 0 ) p(\xi;\theta)=\left\{\begin{array}{rl}\frac{2\theta}{\xi^3}e^{-\frac{\theta}{\xi^2}},& x >0 \\ 0,& x\le 0 \end{array}\right.(\theta>0) p(ξ;θ)={ξ32θeξ2θ,0,x>0x0(θ>0)

似然函数为
L ( θ ) = { 2 n θ n ( ∏ i = 1 n x i ) 3 e − ∑ i = 1 n θ x i 2 , x i > 0 0 , x i ≤ 0. L(\theta)=\left\{\begin{array}{rl}\frac{2^n\theta^n}{(\prod\limits_{i=1}^{n}x_i)^3}e^{-\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2}},& x_i >0\\ 0\qquad,& x_i\le 0.\end{array}\right. L(θ)=(i=1nxi)32nθnei=1nxi2θ,0,xi>0xi0.

( i = 1 , ⋯   , n , θ > 0 ) (i=1,\cdots,n,\theta>0) (i=1,,n,θ>0)

对数似然函数为
l ( θ ) = ln ⁡ L ( θ ) = n ln ⁡ 2 + n ln ⁡ θ − 3 ∑ i = 1 n ln ⁡ x i − ∑ i = 1 n θ x i 2 , x i > 0 , ( i = 1 , ⋯   , n , θ > 0 ) \begin{array}{rl} l(\theta)&=\ln L(\theta)\\&=n\ln 2+n\ln \theta-3\sum\limits_{i=1}^{n}\ln x_i-\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2},\\& x_i>0,(i=1,\cdots,n,\theta>0)\end{array} l(θ)=lnL(θ)=nln2+nlnθ3i=1nlnxii=1nxi2θ,xi>0,(i=1,,n,θ>0)
d l ( θ ) d θ = n θ − ∑ i = 1 n 1 x i 2 , \frac{dl(\theta)}{d\theta}=\frac{n}{\theta}-\sum\limits_{i=1}^{n}\frac{1}{x_i^2}, dθdl(θ)=θni=1nxi21,
d 2 l ( θ ) d θ 2 = − n θ 2 . \frac{d^2l(\theta)}{d\theta^2}=-\frac{n}{\theta^2}. dθ2d2l(θ)=θ2n.
所以, θ \theta θ F i s h e r Fisher Fisher信息量为 I ( θ ) = − E ( d 2 l ( θ ) d θ 2 ) = n θ 2 . I(\theta)=-E(\frac{d^2l(\theta)}{d\theta^2})=\frac{n}{\theta^2}. I(θ)=E(dθ2d2l(θ))=θ2n.
当样本量为 n n n时, θ \theta θ无偏估计方差的 C − R C-R CR下界 1 I ( θ ) = θ 2 n . \frac{1}{I(\theta)}=\frac{\theta^2}{n}. I(θ)1=nθ2.


如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值