2.22设总体 ξ \xi ξ是含未知参数 θ \theta θ的分布,其密度函数为 p ( x ; θ ) = 2 θ x 3 e − θ / x 2 I ( 0 , ∞ ) ( x ) , θ > 0. p(x;\theta)=\frac{2\theta}{x^3}e^{-\theta/x^2}I_{(0,\infty)}(x),\quad\theta>0. p(x;θ)=x32θe−θ/x2I(0,∞)(x),θ>0.求 θ \theta θ的 F i s h e r Fisher Fisher信息量和当样本量为 n n n时, θ \theta θ无偏估计方差的 C − R C-R C−R下界。
参考答案:
设 x 1 , ⋯ , x n x_1,\cdots,x_n x1,⋯,xn是对应 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn的样本值。
总体
ξ
\xi
ξ的密度函数为
p
(
ξ
;
θ
)
=
{
2
θ
ξ
3
e
−
θ
ξ
2
,
x
>
0
0
,
x
≤
0
(
θ
>
0
)
p(\xi;\theta)=\left\{\begin{array}{rl}\frac{2\theta}{\xi^3}e^{-\frac{\theta}{\xi^2}},& x >0 \\ 0,& x\le 0 \end{array}\right.(\theta>0)
p(ξ;θ)={ξ32θe−ξ2θ,0,x>0x≤0(θ>0)
似然函数为
L
(
θ
)
=
{
2
n
θ
n
(
∏
i
=
1
n
x
i
)
3
e
−
∑
i
=
1
n
θ
x
i
2
,
x
i
>
0
0
,
x
i
≤
0.
L(\theta)=\left\{\begin{array}{rl}\frac{2^n\theta^n}{(\prod\limits_{i=1}^{n}x_i)^3}e^{-\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2}},& x_i >0\\ 0\qquad,& x_i\le 0.\end{array}\right.
L(θ)=⎩⎪⎨⎪⎧(i=1∏nxi)32nθne−i=1∑nxi2θ,0,xi>0xi≤0.
( i = 1 , ⋯ , n , θ > 0 ) (i=1,\cdots,n,\theta>0) (i=1,⋯,n,θ>0)
对数似然函数为
l
(
θ
)
=
ln
L
(
θ
)
=
n
ln
2
+
n
ln
θ
−
3
∑
i
=
1
n
ln
x
i
−
∑
i
=
1
n
θ
x
i
2
,
x
i
>
0
,
(
i
=
1
,
⋯
,
n
,
θ
>
0
)
\begin{array}{rl} l(\theta)&=\ln L(\theta)\\&=n\ln 2+n\ln \theta-3\sum\limits_{i=1}^{n}\ln x_i-\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2},\\& x_i>0,(i=1,\cdots,n,\theta>0)\end{array}
l(θ)=lnL(θ)=nln2+nlnθ−3i=1∑nlnxi−i=1∑nxi2θ,xi>0,(i=1,⋯,n,θ>0)
由
d
l
(
θ
)
d
θ
=
n
θ
−
∑
i
=
1
n
1
x
i
2
,
\frac{dl(\theta)}{d\theta}=\frac{n}{\theta}-\sum\limits_{i=1}^{n}\frac{1}{x_i^2},
dθdl(θ)=θn−i=1∑nxi21,
得
d
2
l
(
θ
)
d
θ
2
=
−
n
θ
2
.
\frac{d^2l(\theta)}{d\theta^2}=-\frac{n}{\theta^2}.
dθ2d2l(θ)=−θ2n.
所以,
θ
\theta
θ的
F
i
s
h
e
r
Fisher
Fisher信息量为
I
(
θ
)
=
−
E
(
d
2
l
(
θ
)
d
θ
2
)
=
n
θ
2
.
I(\theta)=-E(\frac{d^2l(\theta)}{d\theta^2})=\frac{n}{\theta^2}.
I(θ)=−E(dθ2d2l(θ))=θ2n.
当样本量为
n
n
n时,
θ
\theta
θ无偏估计方差的
C
−
R
C-R
C−R下界
1
I
(
θ
)
=
θ
2
n
.
\frac{1}{I(\theta)}=\frac{\theta^2}{n}.
I(θ)1=nθ2.
如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!