数理统计讲义第二章课后答案8

2.18设 ( X , Y ) = ( ( X 1 , Y 1 ) , ⋯   , ( X n , Y n ) ) (X,Y)= ((X_{1},Y_{1}),\cdots,(X_{n},Y_{n})) (X,Y)=((X1,Y1),,(Xn,Yn))为取自两维正态总体的简单随机样本。求总体均值 μ X , μ Y \mu_X,\mu_Y μX,μY,总体方差 σ X , σ Y \sigma_X,\sigma_Y σX,σY和总体相关系数 ρ X Y \rho_{XY} ρXY的最大似然估计(对于两维正态总体参数的最大似然估计,除了利用一般的求多维正态总体参数最大似然估计的方法外,也可将两维分布密度写为一维的边缘分布和条件分布的乘积,并利用密度的这一表示式求出各参数的最大似然估计)。

参考答案:

方法一:(多维正态总体参数)设 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值, y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn是对应 Y 1 , ⋯   , Y n Y_1,\cdots,Y_n Y1,,Yn的样本值。

总体 Z = d N ( μ , Σ ) Z\stackrel{d}{=}N(\mu,\Sigma) Z=dN(μ,Σ)

其中 Z = ( X Y ) , μ = ( μ X μ Y ) , Z=\begin{pmatrix}X \\ Y\end{pmatrix},\mu=\begin{pmatrix}\mu_X\\\mu_Y\end{pmatrix}, Z=(XY),μ=(μXμY), Σ = ( σ X 2 ρ X Y σ X σ Y ρ X Y σ X σ Y σ Y 2 ) \Sigma=\begin{pmatrix}\sigma_X^2 & \rho_{XY}\sigma_X\sigma_Y\\ \rho_{XY}\sigma_X\sigma_Y&\sigma_Y^2\end{pmatrix} Σ=(σX2ρXYσXσYρXYσXσYσY2)

总体 Z Z Z的密度函数为
p ( z ) = 1 ( 2 π ) 2 ∣ Σ ∣ exp ⁡ { − 1 2 ( z − μ ) ′ Σ − 1 ( z − μ ) } p(z)=\frac{1}{\sqrt{(2\pi)^2|\Sigma|}}\exp\{-\frac{1}{2}(z-\mu)'\Sigma^{-1}(z-\mu)\} p(z)=(2π)2Σ 1exp{21(zμ)Σ1(zμ)}

似然函数为

L ( μ , Σ ) = ∏ i = 1 n p ( z i ) = 1 ( 2 π ) n ∣ Σ ∣ n 2 exp ⁡ { − 1 2 ∑ i = 1 n ( z i − μ ) ′ Σ − 1 ( z i − μ ) } \begin{array}{rl}&L(\mu,\Sigma)=\prod_{i=1}^{n}\limits p(z_i)\\&=\frac{1}{(2\pi)^n|\Sigma|^{\frac{n}{2}}}\exp\{-\frac{1}{2}\sum_{i=1}^{n}\limits(z_i-\mu)'\Sigma^{-1}(z_i-\mu)\}\end{array} L(μ,Σ)=i=1np(zi)=(2π)nΣ2n1exp{21i=1n(ziμ)Σ1(ziμ)}

对数似然函数为

l ( μ , Σ ) = ln ⁡ L ( μ , Σ ) = − n ln ⁡ ( 2 π ) − n 2 ln ⁡ ∣ Σ ∣ − 1 2 ∑ i = 1 n ( z i − μ ) ′ Σ − 1 ( z i − μ ) \begin{array}{rl}l(\mu,\Sigma)&=\ln L(\mu,\Sigma)\\&=-n\ln(2\pi)-\frac{n}{2}\ln|\Sigma|\\&-\frac{1}{2}\sum_{i=1}^{n}\limits(z_i-\mu)'\Sigma^{-1}(z_i-\mu)\end{array} l(μ,Σ)=lnL(μ,Σ)=nln(2π)2nlnΣ21i=1n(ziμ)Σ1(ziμ)

{ d l ( μ , Σ ) d μ = 1 2 ∑ i = 1 n Σ − 1 ( z i − μ ) = 0 d l ( μ , Σ ) d Σ = − n 2 Σ − 1 + 1 2 ∑ i = 1 n ( z i − μ ) ( z i − μ ) ′ ( Σ − 1 ) 2 = 0 \left\{\begin{array}{rl} \frac{dl(\mu,\Sigma)}{d\mu}&=\frac{1}{2}\sum_{i=1}^{n}\limits\Sigma^{-1}(z_i-\mu)=0\\ \frac{dl(\mu,\Sigma)}{d\Sigma}&=-\frac{n}{2}\Sigma^{-1}\\&+\frac{1}{2}\sum_{i=1}^{n}\limits(z_i-\mu)(z_i-\mu)'(\Sigma^{-1})^2=0 \end{array} \right. dμdl(μ,Σ)dΣdl(μ,Σ)=21i=1nΣ1(ziμ)=0=2nΣ1+21i=1n(ziμ)(ziμ)(Σ1)2=0

{ μ = 1 n ∑ i = 1 n z i = z ˉ Σ = 1 n ∑ i = 1 n ( z i − μ ) ( z i − μ ) ′ = 1 n ∑ i = 1 n ( z i − z ˉ ) ( z i − z ˉ ) ′ \left\{\begin{array}{rl} \mu&=\frac{1}{n}\sum_{i=1}^{n}\limits z_i=\bar{z}\\ \Sigma&=\frac{1}{n}\sum_{i=1}^{n}\limits(z_i-\mu)(z_i-\mu)'\\&=\frac{1}{n}\sum_{i=1}^{n}\limits(z_i-\bar{z})(z_i-\bar{z})' \end{array} \right. μΣ=n1i=1nzi=zˉ=n1i=1n(ziμ)(ziμ)=n1i=1n(zizˉ)(zizˉ)

μ X , μ Y , σ X , σ Y , ρ X Y \mu_X,\mu_Y,\sigma_X,\sigma_Y,\rho_{XY} μX,μY,σX,σY,ρXY的最大似然估计量为
μ ^ X = X ˉ , μ ^ Y = Y ˉ , \widehat{\mu}_X=\bar{X},\widehat{\mu}_Y=\bar{Y}, μ X=Xˉ,μ Y=Yˉ, σ ^ X = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 , \widehat{\sigma}_X=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(X_i-\bar{X})^2}, σ X=n1i=1n(XiXˉ)2 , σ ^ Y = 1 n ∑ i = 1 n ( Y i − Y ˉ ) 2 , \widehat{\sigma}_Y=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(Y_i-\bar{Y})^2}, σ Y=n1i=1n(YiYˉ)2 , ρ ^ X Y = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 . \widehat{\rho}_{XY}=\frac{\sum_{i=1}^{n}\limits(X_i-\bar{X})(Y_i-\bar{Y})}{\sqrt{\sum_{i=1}^{n}\limits(X_i-\bar{X})^2}\sqrt{\sum_{i=1}^{n}\limits(Y_i-\bar{Y})^2}}. ρ XY=i=1n(XiXˉ)2 i=1n(YiYˉ)2 i=1n(XiXˉ)(YiYˉ).

方法二:(将两维分布密度写为一维的边缘分布和条件分布的乘积)设 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值, y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn是对应 Y 1 , ⋯   , Y n Y_1,\cdots,Y_n Y1,,Yn的样本值。

总体 Z = d N ( μ , Σ ) Z\stackrel{d}{=}N(\mu,\Sigma) Z=dN(μ,Σ)
其中 Z = ( X Y ) , μ = ( μ X μ Y ) , Z=\begin{pmatrix}X \\ Y\end{pmatrix},\mu=\begin{pmatrix}\mu_X\\\mu_Y\end{pmatrix}, Z=(XY),μ=(μXμY), Σ = ( σ X 2 ρ X Y σ X σ Y ρ X Y σ X σ Y σ Y 2 ) \Sigma=\begin{pmatrix}\sigma_X^2 & \rho_{XY}\sigma_X\sigma_Y\\ \rho_{XY}\sigma_X\sigma_Y&\sigma_Y^2\end{pmatrix} Σ=(σX2ρXYσXσYρXYσXσYσY2)

总体 Z Z Z的密度函数为 p ( z ) = 1 ( 2 π ) 2 ∣ Σ ∣ exp ⁡ { − 1 2 ( z − μ ) ′ Σ − 1 ( z − μ ) } p(z)=\frac{1}{\sqrt{(2\pi)^2|\Sigma|}}\exp\{-\frac{1}{2}(z-\mu)'\Sigma^{-1}(z-\mu)\} p(z)=(2π)2Σ 1exp{21(zμ)Σ1(zμ)}

X X X的边缘密度为 p ( x ) = ∫ p ( z ) d y = 1 2 π σ X exp ⁡ { − ( x − μ X ) 2 2 σ X 2 } p(x)=\int p(z) dy=\frac{1}{\sqrt{2\pi}\sigma_X}\exp\{-\frac{(x-\mu_X)^2}{2\sigma_X^2}\} p(x)=p(z)dy=2π σX1exp{2σX2(xμX)2}

Y Y Y的边缘密度为 p ( y ) = ∫ p ( z ) d y = 1 2 π σ Y exp ⁡ { − ( y − μ Y ) 2 2 σ Y 2 } p(y)=\int p(z) dy=\frac{1}{\sqrt{2\pi}\sigma_Y}\exp\{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}\} p(y)=p(z)dy=2π σY1exp{2σY2(yμY)2}

X X X Y = y Y=y Y=y下的条件分布 p ( x ∣ Y = y ) = p ( z ) p ( y ) = 1 2 π 1 − ρ X Y 2 σ X exp ⁡ { − 1 2 ( 1 − ρ X Y 2 ) [ ( x − μ X ) 2 σ X 2 − 2 ρ X Y ( x − μ X ) ( y − μ Y ) σ X σ Y + ( y − μ Y ) 2 σ Y 2 ] + ( y − μ Y ) 2 2 σ Y 2 } \begin{array}{rl} p(x|Y=y)&=\frac{p(z)}{p(y)}\\&=\frac{1}{\sqrt{2\pi}\sqrt{1-\rho_{XY}^2}\sigma_X}\exp\{-\frac{1}{2(1-\rho_{XY}^2)}\\&[\frac{(x-\mu_X)^2}{\sigma_X^2}-\frac{2\rho_{XY}(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\\&+\frac{(y-\mu_Y)^2}{\sigma_Y^2}]+\frac{(y-\mu_Y)^2}{2\sigma_Y^2}\} \end{array} p(xY=y)=p(y)p(z)=2π 1ρXY2 σX1exp{2(1ρXY2)1[σX2(xμX)2σXσY2ρXY(xμX)(yμY)+σY2(yμY)2]+2σY2(yμY)2}
似然函数为 L ( μ X , Σ X ) = ∏ i = 1 n p ( x i ) = 1 ( 2 π ) n 2 σ X n exp ⁡ { − ∑ i = 1 n ( x i − μ X ) 2 2 σ X 2 } L ( μ Y , Σ Y ) = ∏ i = 1 n p ( y i ) = 1 ( 2 π ) n 2 σ Y n exp ⁡ { − ∑ i = 1 n ( y i − μ Y ) 2 2 σ Y 2 } L ( ρ X Y ) = 1 ( 2 π ) n 2 ( 1 − ρ X Y 2 ) n 2 σ X n ⋅ exp ⁡ { − 1 2 ( 1 − ρ X Y 2 ) ∑ i = 1 n [ ( x i − μ X ) 2 σ X 2 − 2 ρ X Y ( x i − μ X ) ( y i − μ Y ) σ X σ Y + ( y i − μ Y ) 2 σ Y 2 ] + ∑ i = 1 n ( y i − μ Y ) 2 2 σ Y 2 } \begin{array}{rl} L(\mu_X,\Sigma_X)&=\prod_{i=1}^{n}\limits p(x_i)\\&=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_X^n}\exp\{-\frac{\sum_{i=1}^{n}\limits(x_i-\mu_X)^2}{2\sigma_X^2}\}\\ L(\mu_Y,\Sigma_Y)&=\prod_{i=1}^{n}\limits p(y_i)\\&=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_Y^n}\exp\{-\frac{\sum_{i=1}^{n}\limits(y_i-\mu_Y)^2}{2\sigma_Y^2}\}\\ L(\rho_{XY})&=\frac{1}{(2\pi)^{\frac{n}{2}}(1-\rho_{XY}^2)^{\frac{n}{2}}\sigma_X^n}\cdot\\&\exp\{-\frac{1}{2(1-\rho_{XY}^2)}\sum_{i=1}^{n}\limits[\frac{(x_i-\mu_X)^2}{\sigma_X^2}-\\&\frac{2\rho_{XY}(x_i-\mu_X)(y_i-\mu_Y)}{\sigma_X\sigma_Y}+\frac{(y_i-\mu_Y)^2}{\sigma_Y^2}]\\&+\sum_{i=1}^{n}\limits\frac{(y_i-\mu_Y)^2}{2\sigma_Y^2}\} \end{array} L(μX,ΣX)L(μY,ΣY)L(ρXY)=i=1np(xi)=(2π)2nσXn1exp{2σX2i=1n(xiμX)2}=i=1np(yi)=(2π)2nσYn1exp{2σY2i=1n(yiμY)2}=(2π)2n(1ρXY2)2nσXn1exp{2(1ρXY2)1i=1n[σX2(xiμX)2σXσY2ρXY(xiμX)(yiμY)+σY2(yiμY)2]+i=1n2σY2(yiμY)2}

对数似然函数为 l ( μ X , Σ X ) = ln ⁡ L ( μ X , Σ X ) = − n 2 ln ⁡ 2 π − n ln ⁡ σ X − ∑ i = 1 n ( x i − μ X ) 2 2 σ X 2 l ( μ Y , Σ Y ) = ln ⁡ L ( μ Y , Σ Y ) = − n 2 ln ⁡ 2 π − n ln ⁡ σ Y − ∑ i = 1 n ( y i − μ Y ) 2 2 σ Y 2 l ( ρ X Y ) = ln ⁡ L ( ρ X Y ) = − n 2 ln ⁡ 2 π − n 2 ln ⁡ ( 1 − ρ X Y 2 ) − n ln ⁡ σ Y − 1 2 ( 1 − ρ X Y 2 ) ∑ i = 1 n [ ( x i − μ X ) 2 σ X 2 − 2 ρ X Y ( x i − μ X ) ( y i − μ Y ) σ X σ Y + ( y i − μ Y ) 2 σ Y 2 ] + ∑ i = 1 n ( y i − μ Y ) 2 2 σ Y 2 \begin{array}{rl} l(\mu_X,\Sigma_X)&=\ln L(\mu_X,\Sigma_X)=-\frac{n}{2}\ln{2\pi}\\&-n\ln\sigma_X-\frac{\sum_{i=1}^{n}\limits(x_i-\mu_X)^2}{2\sigma_X^2}\\ l(\mu_Y,\Sigma_Y)&=\ln L(\mu_Y,\Sigma_Y)=-\frac{n}{2}\ln{2\pi}\\&-n\ln\sigma_Y-\frac{\sum_{i=1}^{n}\limits(y_i-\mu_Y)^2}{2\sigma_Y^2}\\ l(\rho_{XY})&=\ln L(\rho_{XY})=-\frac{n}{2}\ln{2\pi}\\&-\frac{n}{2}\ln{(1-\rho_{XY}^2)}-n\ln \sigma_Y\\&-\frac{1}{2(1-\rho_{XY}^2)}\sum_{i=1}^{n}\limits[\frac{(x_i-\mu_X)^2}{\sigma_X^2}\\&-\frac{2\rho_{XY}(x_i-\mu_X)(y_i-\mu_Y)}{\sigma_X\sigma_Y}+\frac{(y_i-\mu_Y)^2}{\sigma_Y^2}]\\&+\sum_{i=1}^{n}\limits\frac{(y_i-\mu_Y)^2}{2\sigma_Y^2} \end{array} l(μX,ΣX)l(μY,ΣY)l(ρXY)=lnL(μX,ΣX)=2nln2πnlnσX2σX2i=1n(xiμX)2=lnL(μY,ΣY)=2nln2πnlnσY2σY2i=1n(yiμY)2=lnL(ρXY)=2nln2π2nln(1ρXY2)nlnσY2(1ρXY2)1i=1n[σX2(xiμX)2σXσY2ρXY(xiμX)(yiμY)+σY2(yiμY)2]+i=1n2σY2(yiμY)2

{ d l ( μ X , Σ X ) d μ X = − 2 n μ X − 2 n X ˉ 2 σ X 2 = 0 d l ( μ Y , Σ Y ) d μ Y = − 2 n μ Y − 2 n Y ˉ 2 σ Y 2 = 0 d l ( μ X , Σ X ) d σ X = − n σ X + ∑ i = 1 n ( x i − μ X ) 2 σ X 3 = 0 d l ( μ Y , Σ Y ) d σ Y = − n σ Y + ∑ i = 1 n ( y i − μ Y ) 2 σ Y 3 = 0 d l ( ρ X Y ) d ρ X Y = 0 \left\{\begin{array}{rl} \frac{dl(\mu_X,\Sigma_X)}{d\mu_X}&=-\frac{2n\mu_X-2n\bar{X}}{2\sigma_X^2}=0\\ \frac{dl(\mu_Y,\Sigma_Y)}{d\mu_Y}&=-\frac{2n\mu_Y-2n\bar{Y}}{2\sigma_Y^2}=0\\ \frac{dl(\mu_X,\Sigma_X)}{d\sigma_X}&=-\frac{n}{\sigma_X}+\frac{\sum_{i=1}^{n}\limits(x_i-\mu_X)^2}{\sigma_X^3}=0\\ \frac{dl(\mu_Y,\Sigma_Y)}{d\sigma_Y}&=-\frac{n}{\sigma_Y}+\frac{\sum_{i=1}^{n}\limits(y_i-\mu_Y)^2}{\sigma_Y^3}=0\\ \frac{dl(\rho_{XY})}{d\rho_{XY}}&=0 \end{array} \right. dμXdl(μX,ΣX)dμYdl(μY,ΣY)dσXdl(μX,ΣX)dσYdl(μY,ΣY)dρXYdl(ρXY)=2σX22nμX2nXˉ=0=2σY22nμY2nYˉ=0=σXn+σX3i=1n(xiμX)2=0=σYn+σY3i=1n(yiμY)2=0=0

{ μ X = x ˉ μ Y = y ˉ σ X = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 σ Y = 1 n ∑ i = 1 n ( y i − y ˉ ) 2 ρ X Y = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 \left\{\begin{array}{rl} &\mu_X=\bar{x}\\ &\mu_Y=\bar{y}\\ &\sigma_X=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(x_i-\bar{x})^2}\\ &\sigma_Y=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(y_i-\bar{y})^2}\\ &\rho_{XY}=\frac{\sum_{i=1}^{n}\limits(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}\limits(x_i-\bar{x})^2}\sqrt{\sum_{i=1}^{n}\limits(y_i-\bar{y})^2}} \end{array} \right. μX=xˉμY=yˉσX=n1i=1n(xixˉ)2 σY=n1i=1n(yiyˉ)2 ρXY=i=1n(xixˉ)2 i=1n(yiyˉ)2 i=1n(xixˉ)(yiyˉ)

μ X , μ Y , σ X , σ Y , ρ X Y \mu_X,\mu_Y,\sigma_X,\sigma_Y,\rho_{XY} μX,μY,σX,σY,ρXY的最大似然估计量为
μ ^ X = X ˉ , μ ^ Y = Y ˉ , \widehat{\mu}_X=\bar{X},\widehat{\mu}_Y=\bar{Y}, μ X=Xˉ,μ Y=Yˉ, σ ^ X = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 , \widehat{\sigma}_X=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(X_i-\bar{X})^2}, σ X=n1i=1n(XiXˉ)2 , σ ^ Y = 1 n ∑ i = 1 n ( Y i − Y ˉ ) 2 , \widehat{\sigma}_Y=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\limits(Y_i-\bar{Y})^2}, σ Y=n1i=1n(YiYˉ)2 , ρ ^ X Y = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 . \widehat{\rho}_{XY}=\frac{\sum_{i=1}^{n}\limits(X_i-\bar{X})(Y_i-\bar{Y})}{\sqrt{\sum_{i=1}^{n}\limits(X_i-\bar{X})^2}\sqrt{\sum_{i=1}^{n}\limits(Y_i-\bar{Y})^2}}. ρ XY=i=1n(XiXˉ)2 i=1n(YiYˉ)2 i=1n(XiXˉ)(YiYˉ).


2.19设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn为取自具有指数分布族 { p ( x ; λ ) = λ − 1 e − x / λ I ( 0 , ∞ ) ( x ) , λ > 0 } \{p(x;\lambda)=\lambda^{-1}e^{-x/\lambda}I_{(0,\infty)}(x),\lambda>0\} {p(x;λ)=λ1ex/λI(0,)(x),λ>0}的简单随机样本。验证 λ \lambda λ的无偏估计 λ ^ = X ˉ \widehat{\lambda}=\bar{X} λ =Xˉ既是 λ \lambda λ的矩法估计,又是 λ \lambda λ的最大似然估计。说明在形为 c X ˉ c\bar{X} cXˉ λ \lambda λ的估计量中,在均方误差准则下存在优于 λ ^ \widehat{\lambda} λ 的估计。

参考答案:

总体 X X X的密度函数为
p ( x ; λ ) = λ − 1 e − x / λ I ( 0 , ∞ ) ( x ) , λ > 0. p(x;\lambda)=\lambda^{-1}e^{-x/\lambda}I_{(0,\infty)}(x),\lambda>0. p(x;λ)=λ1ex/λI(0,)(x),λ>0.
总体矩: μ 1 = E X = ∫ 0 + ∞ x λ − 1 e − x / λ d x = λ , \mu_1=EX=\int_{0}^{+\infty}x\lambda^{-1}e^{-x/\lambda}dx=\lambda, μ1=EX=0+xλ1ex/λdx=λ,
样本矩: A 1 = 1 n ∑ i = 1 n X i = X ˉ . A_1=\frac{1}{n}\sum_{i=1}^{n}X_i=\bar{X}. A1=n1i=1nXi=Xˉ.
μ 1 = A 1 , \mu_1=A_1, μ1=A1, λ = X ˉ . \lambda=\bar{X}. λ=Xˉ.
λ \lambda λ的矩法估计量 λ ^ = X ˉ . \widehat{\lambda}=\bar{X}. λ =Xˉ.

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体 X X X的密度函数为

p ( x ; λ ) = λ − 1 e − x / λ I ( 0 , ∞ ) ( x ) , λ > 0. p(x;\lambda)=\lambda^{-1}e^{-x/\lambda}I_{(0,\infty)}(x),\lambda>0. p(x;λ)=λ1ex/λI(0,)(x),λ>0.
似然函数为
L ( λ ) = { 1 λ n e − ∑ i = 1 n x i λ , x i > 0 0 , x i ≤ 0 ( i = 1 , ⋯   , n ) L(\lambda)=\left\{\begin{array}{rl} \frac{1}{\lambda^n}e^{-\frac{\sum_{i=1}^{n}x_i}{\lambda}},x_i>0 \\ 0\qquad,x_i\le 0 \end{array}\right. (i=1,\cdots,n) L(λ)={λn1eλi=1nxi,xi>00,xi0(i=1,,n)
对数似然函数为
l ( λ ) = ln ⁡ L ( λ ) = − n ln ⁡ λ − ∑ i = 1 n x i λ , l(\lambda)=\ln L(\lambda)=-n\ln\lambda-\frac{\sum_{i=1}^{n}x_i}{\lambda}, l(λ)=lnL(λ)=nlnλλi=1nxi,
x i > 0 ( i = 1 , ⋯   , n ) x_i>0(i=1,\cdots,n) xi>0(i=1,,n)

d l ( λ ) d λ = − n λ + ∑ i = 1 n x i λ 2 = 0 , \frac{dl(\lambda)}{d\lambda}=-\frac{n}{\lambda}+\frac{\sum_{i=1}^{n}x_i}{\lambda^2}=0, dλdl(λ)=λn+λ2i=1nxi=0,

λ = ∑ i = 1 n x i n = x ˉ . \lambda=\frac{\sum_{i=1}^{n}x_i}{n}=\bar{x}. λ=ni=1nxi=xˉ.
λ \lambda λ最大似然估计量为 λ ^ M L E = X ˉ . \widehat{\lambda}_{MLE}=\bar{X}. λ MLE=Xˉ.

λ ^ 1 = c X ˉ , \widehat{\lambda}_1=c\bar{X}, λ 1=cXˉ,
E ( λ ^ 1 ) = E ( c X ˉ ) = c E ( X ˉ ) = c λ , V a r ( λ ^ 1 ) = V a r ( c X ˉ ) = c 2 V a r ( X ˉ ) = c 2 λ 2 n \begin{array}{rl} & E(\widehat{\lambda}_1)=E(c\bar{X})=cE(\bar{X})=c\lambda,\\ & Var(\widehat{\lambda}_1)=Var(c\bar{X})=c^2Var(\bar{X})=\frac{c^2\lambda^2}{n} \end{array} E(λ 1)=E(cXˉ)=cE(Xˉ)=cλ,Var(λ 1)=Var(cXˉ)=c2Var(Xˉ)=nc2λ2


M S E ( X ˉ ) = V a r ( X ˉ ) + ( E ( X ˉ ) − λ ) 2 = λ 2 n , M S E ( λ ^ 1 ) = V a r ( λ ^ 1 ) + ( E ( λ ^ 1 ) − λ ) 2 = c 2 λ 2 n + ( c λ − λ ) 2 = [ n + 1 n ( c − n n + 1 ) 2 + 1 n + 1 ] λ 2 . \begin{array}{rl} MSE(\bar{X})&=Var(\bar{X})+(E(\bar{X})-\lambda)^2\\&=\frac{\lambda^2}{n},\\ MSE(\widehat{\lambda}_1)&=Var(\widehat{\lambda}_1)+(E(\widehat{\lambda}_1)-\lambda)^2\\&=\frac{c^2\lambda^2}{n}+(c\lambda-\lambda)^2\\&=[\frac{n+1}{n}(c-\frac{n}{n+1})^2+\frac{1}{n+1}]\lambda^2. \end{array} MSE(Xˉ)MSE(λ 1)=Var(Xˉ)+(E(Xˉ)λ)2=nλ2,=Var(λ 1)+(E(λ 1)λ)2=nc2λ2+(cλλ)2=[nn+1(cn+1n)2+n+11]λ2.
c = n n + 1 c=\frac{n}{n+1} c=n+1n时, λ ^ 1 = n n + 1 X ˉ \widehat{\lambda}_1=\frac{n}{n+1}\bar{X} λ 1=n+1nXˉ的均方误差 M S E ( λ ^ 1 ) = 1 n + 1 λ 2 MSE(\widehat{\lambda}_1)=\frac{1}{n+1}\lambda^2 MSE(λ 1)=n+11λ2小于 X ˉ \bar{X} Xˉ的均方误差 M S E ( X ˉ ) = λ 2 n , MSE(\bar{X})=\frac{\lambda^2}{n}, MSE(Xˉ)=nλ2,

故在形为 c X ˉ c\bar{X} cXˉ λ \lambda λ的估计量中,在均方误差准则下存在优于 λ ^ \widehat{\lambda} λ 的估计。


如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值