数理统计讲义第二章课后答案10

2.22 设总体 ξ \xi ξ是含未知参数 θ \theta θ的分布,其密度函数为
p ( x ; θ ) = 2 θ x 3 e − θ / x 2 I ( 0 , ∞ ) ( x ) , θ > 0. p(x;\theta)=\frac{2\theta}{x^3}e^{-\theta/x^2}I_{(0,\infty)}(x),\theta>0. p(x;θ)=x32θeθ/x2I(0,)(x),θ>0.
θ \theta θ F i s h e r Fisher Fisher信息量和当样本量为 n n n时, θ \theta θ无偏估计方差的 C − R C-R CR下界。

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体 ξ \xi ξ的密度函数为

p ( ξ ; θ ) = { 2 θ ξ 3 e − θ ξ 2 , x > 0 0 , x ≤ 0 ( θ > 0 ) p(\xi;\theta)=\left\{\begin{array}{rl}\frac{2\theta}{\xi^3}e^{-\frac{\theta}{\xi^2}},& x >0 \\ 0,&x\le 0 \end{array}\right.(\theta>0) p(ξ;θ)={ξ32θeξ2θ,0,x>0x0(θ>0)

似然函数为

L ( θ ) = { 2 n θ n ( ∏ i = 1 n x i ) 3 e − ∑ i = 1 n θ x i 2 , x i > 0 0 , x i ≤ 0. L(\theta)=\left\{\begin{array}{rl}\frac{2^n\theta^n}{(\prod\limits_{i=1}^{n}x_i)^3}e^{-\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2}},&x_i>0\\ 0\qquad,&x_i\le 0.\end{array}\right. L(θ)=(i=1nxi)32nθnei=1nxi2θ,0,xi>0xi0. ( i = 1 , ⋯   , n , θ > 0 ) (i=1,\cdots,n,\theta>0) (i=1,,n,θ>0)

对数似然函数为

l ( θ ) = ln ⁡ L ( θ ) = n ln ⁡ 2 + n ln ⁡ θ − 3 ∑ i = 1 n ln ⁡ x i − ∑ i = 1 n θ x i 2 , x i > 0 , ( i = 1 , ⋯   , n , θ > 0 ) \begin{array}{rl}l(\theta)&=\ln L(\theta)\\&=n\ln 2+n\ln \theta-3\sum\limits_{i=1}^{n}\ln x_i\\& -\sum\limits_{i=1}^{n}\frac{\theta}{x_i^2},x_i>0,(i=1,\cdots,n,\theta>0)\end{array} l(θ)=lnL(θ)=nln2+nlnθ3i=1nlnxii=1nxi2θ,xi>0,(i=1,,n,θ>0)

d l ( θ ) d θ = n θ − ∑ i = 1 n 1 x i 2 , \frac{dl(\theta)}{d\theta}=\frac{n}{\theta}-\sum\limits_{i=1}^{n}\frac{1}{x_i^2}, dθdl(θ)=θni=1nxi21,

d 2 l ( θ ) d θ 2 = − n θ 2 . \frac{d^2l(\theta)}{d\theta^2}=-\frac{n}{\theta^2}. dθ2d2l(θ)=θ2n.

I X ( θ ) = − E ( d 2 l ( θ ) d θ 2 ) = n θ 2 . I_X(\theta)=-E(\frac{d^2l(\theta)}{d\theta^2})=\frac{n}{\theta^2}. IX(θ)=E(dθ2d2l(θ))=θ2n.

所以, θ \theta θ F i s h e r Fisher Fisher信息量为

I ( θ ) = I X ( θ ) n = 1 θ 2 . I(\theta)=\frac{I_X(\theta)}{n}=\frac{1}{\theta^2}. I(θ)=nIX(θ)=θ21.

当样本量为 n n n时, θ \theta θ无偏估计方差的 C − R C-R CR下界

1 I X ( θ ) = θ 2 n . \frac{1}{I_X(\theta)}=\frac{\theta^2}{n}. IX(θ)1=nθ2.

2.23写出下列分布族中,达到 C − R C-R CR下界的基于样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的无偏估计的参数函数形式和估计量:

(1)二项分布族 { b ( k , p ) , p ∈ ( 0 , 1 ) } . \{b(k,p),p\in(0,1)\}. {b(k,p),p(0,1)}.

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体

ξ = d b ( k , p ) , p ∈ ( 0 , 1 ) . \xi\xlongequal{d}b(k,p),p\in(0,1). ξd b(k,p),p(0,1).

总体 ξ \xi ξ的分布律为

p ( ξ = x ) = C k x p x ( 1 − p ) k − x , p(\xi=x)=C_k^xp^x(1-p)^{k-x}, p(ξ=x)=Ckxpx(1p)kx, x = 0 , 1 , ⋯   , k , p ∈ ( 0 , 1 ) . x=0,1,\cdots,k,p\in(0,1). x=0,1,,k,p(0,1).

似然函数为

L ( p ) = ∏ i = 1 n p ( X i = x i ) = ∏ i = 1 n C k x i p x i ( 1 − p ) k − x i = ( ∏ i = 1 n C k x i ) p ∑ i = 1 n x i ( 1 − p ) n k − ∑ i = 1 n x i , \begin{array}{rl}L(p)&=\prod\limits_{i=1}^{n}p(X_i=x_i)\\&=\prod\limits_{i=1}^{n}C_k^{x_i}p^{x_i}(1-p)^{k-x_i}\\&=(\prod\limits_{i=1}^{n}C_k^{x_i})p^{\sum\limits_{i=1}^{n}x_i}(1-p)^{nk-\sum\limits_{i=1}^{n}x_i},\end{array} L(p)=i=1np(Xi=xi)=i=1nCkxipxi(1p)kxi=(i=1nCkxi)pi=1nxi(1p)nki=1nxi,

x i = 0 , 1 , ⋯   , k , p ∈ ( 0 , 1 ) . x_i=0,1,\cdots,k,p\in(0,1). xi=0,1,,k,p(0,1).

对数似然函数为

l ( p ) = ln ⁡ L ( p ) = ∑ i = 1 n ln ⁡ C k x i + ∑ i = 1 n x i ln ⁡ p + ( n k − ∑ i = 1 n x i ) ln ⁡ ( 1 − p ) , x i = 0 , 1 , ⋯   , k , p ∈ ( 0 , 1 ) . \begin{array}{rl}l(p)&=\ln L(p)=\sum\limits_{i=1}^{n}\ln C_k^{x_i}+\sum\limits_{i=1}^{n}x_i\ln p\\&+(nk-\sum\limits_{i=1}^{n}x_i)\ln (1-p),\\&x_i=0,1,\cdots,k,p\in(0,1).\end{array} l(p)=lnL(p)=i=1nlnCkxi+i=1nxilnp+(nki=1nxi)ln(1p),xi=0,1,,k,p(0,1).

d l ( p ) d p = 1 p ∑ i = 1 n x i − 1 1 − p ( n k − ∑ i = 1 n x i ) = 0 , \begin{array}{rl}\frac{dl(p)}{dp}&=\frac{1}{p}\sum\limits_{i=1}^{n}x_i\\&-\frac{1}{1-p}(nk-\sum\limits_{i=1}^{n}x_i)=0,\end{array} dpdl(p)=p1i=1nxi1p1(nki=1nxi)=0,

p = ∑ i = 1 n x i n k = x ˉ k . p=\frac{\sum\limits_{i=1}^{n}x_i}{nk}=\frac{\bar{x}}{k}. p=nki=1nxi=kxˉ.

所以, p p p的估计量

P ^ = X ˉ k . \widehat{P}=\frac{\bar{X}}{k}. P =kXˉ.

由于

E ( P ^ ) = E ( X ˉ k ) = 1 k E ( X ˉ ) = p , E(\widehat{P})=E(\frac{\bar{X}}{k})=\frac{1}{k}E(\bar{X})=p, E(P )=E(kXˉ)=k1E(Xˉ)=p,

所以, P ^ = X ˉ k \widehat{P}=\frac{\bar{X}}{k} P =kXˉ p p p的无偏估计。

V a r ( p ^ ) = V a r ( X ˉ k ) = 1 n 2 k 2 ∑ i = 1 n V a r ( X i ) = p ( 1 − p ) n k \begin{array}{rl}Var(\widehat{p})&=Var(\frac{\bar{X}}{k})\\&=\frac{1}{n^2k^2}\sum\limits_{i=1}^{n}Var(X_i)\\&=\frac{p(1-p)}{nk}\end{array} Var(p )=Var(kXˉ)=n2k21i=1nVar(Xi)=nkp(1p)

d 2 l ( p ) d p 2 = − 1 p 2 ∑ i = 1 n X i − 1 ( 1 − p ) 2 ( n k − ∑ i = 1 n X i ) \begin{array}{rl}\frac{d^2l(p)}{dp^2}&=-\frac{1}{p^2}\sum\limits_{i=1}^{n}X_i\\&-\frac{1}{(1-p)^2}(nk-\sum\limits_{i=1}^{n}X_i)\end{array} dp2d2l(p)=p21i=1nXi(1p)21(nki=1nXi)

I X ( p ) = E ( − d 2 l ( p ) d p 2 ) = E ( 1 p 2 ∑ i = 1 n X i + 1 ( 1 − p ) 2 ( n k − ∑ i = 1 n X i ) ) = n k p ( 1 − p ) \begin{array}{rl}I_X(p)&=E(-\frac{d^2l(p)}{dp^2})\\&=E(\frac{1}{p^2}\sum\limits_{i=1}^{n}X_i\\&+\frac{1}{(1-p)^2}(nk-\sum\limits_{i=1}^{n}X_i))\\&=\frac{nk}{p(1-p)}\end{array} IX(p)=E(dp2d2l(p))=E(p21i=1nXi+(1p)21(nki=1nXi))=p(1p)nk

因为

V a r ( p ^ ) = 1 I X ( p ) Var(\widehat{p})=\frac{1}{I_X(p)} Var(p )=IX(p)1

所以 P ^ \widehat{P} P 作为 p p p的无偏估计其方差达到了 C − R C-R CR下界。

(2)正态分布族 { N ( μ , σ 0 2 ) , μ ∈ R } . \{N(\mu,\sigma_0^2),\mu\in R\}. {N(μ,σ02),μR}.

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体

ξ = d N ( μ , σ 0 2 ) , ( σ = σ 0 ) \xi\stackrel{d}{=}N(\mu,\sigma_0^2),(\sigma=\sigma_0) ξ=dN(μ,σ02),(σ=σ0)

总体 ξ \xi ξ的密度函数为

p ( ξ ; μ ) = 1 2 π σ 0 e − ( ξ − μ ) 2 2 σ 0 2 , μ ∈ R . p(\xi;\mu)=\frac{1}{\sqrt{2\pi}\sigma_0}e^{-\frac{(\xi-\mu)^2}{2\sigma_0^2}},\mu\in R. p(ξ;μ)=2π σ01e2σ02(ξμ)2,μR.

似然函数为

L ( μ ) = ∏ i = 1 n p ( x i ; μ ) = ∏ i = 1 n 1 2 π σ 0 e − ( x i − μ ) 2 2 σ 0 2 = 1 ( 2 π ) n 2 σ 0 n e − ∑ i = 1 n ( x i − μ ) 2 2 σ 0 2 , μ ∈ R \begin{array}{rl}L(\mu)&=\prod\limits_{i=1}^{n}p(x_i;\mu)\\&=\prod\limits_{i=1}^{n}\frac{1}{\sqrt{2\pi}\sigma_0}e^{-\frac{(x_i-\mu)^2}{2\sigma_0^2}}\\&=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_0^n}e^{-\frac{\sum\limits_{i=1}^{n}(x_i-\mu)^2}{2\sigma_0^2}},\mu\in R\end{array} L(μ)=i=1np(xi;μ)=i=1n2π σ01e2σ02(xiμ)2=(2π)2nσ0n1e2σ02i=1n(xiμ)2,μR

对数似然函数为

l ( μ ) = ln ⁡ L ( μ ) = − n 2 ln ⁡ ( 2 π ) − n 2 ln ⁡ ( σ 0 2 ) − ∑ i = 1 n ( x i − μ ) 2 2 σ 0 2 , μ ∈ R . \begin{array}{rl}l(\mu)&=\ln L(\mu)\\&=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln(\sigma_0^2)\\&-\frac{\sum\limits_{i=1}^{n}(x_i-\mu)^2}{2\sigma_0^2},\mu\in R.\end{array} l(μ)=lnL(μ)=2nln(2π)2nln(σ02)2σ02i=1n(xiμ)2,μR.

d l ( μ ) d μ = 1 σ 0 2 ( ∑ i = 1 n x i − n μ ) = 0 , \frac{dl(\mu)}{d\mu}=\frac{1}{\sigma_0^2}(\sum\limits_{i=1}^{n}x_i-n\mu)=0, dμdl(μ)=σ021(i=1nxinμ)=0,

μ = 1 n ∑ i = 1 n x i = x ˉ . \mu=\frac{1}{n}\sum\limits_{i=1}^{n}x_i=\bar{x}. μ=n1i=1nxi=xˉ.

所以, μ \mu μ的估计量

μ ^ = X ˉ . \widehat{\mu}=\bar{X}. μ =Xˉ.

由于

E ( μ ^ ) = E ( X ˉ ) = μ , E(\widehat{\mu})=E(\bar{X})=\mu, E(μ )=E(Xˉ)=μ,

所以, μ ^ = X ˉ \widehat{\mu}=\bar{X} μ =Xˉ μ \mu μ的无偏估计。

V a r ( μ ^ ) = V a r ( X ˉ ) = 1 n 2 ∑ i = 1 n V a r ( X i ) = σ 0 2 n \begin{array}{rl}Var(\widehat{\mu})&=Var(\bar{X})\\&=\frac{1}{n^2}\sum\limits_{i=1}^{n}Var(X_i)\\&=\frac{\sigma_0^2}{n}\end{array} Var(μ )=Var(Xˉ)=n21i=1nVar(Xi)=nσ02

d 2 l ( μ ) d μ 2 = − n σ 0 2 \frac{d^2l(\mu)}{d\mu^2}=-\frac{n}{\sigma_0^2} dμ2d2l(μ)=σ02n

I X ( μ ) = E ( − d 2 l ( μ ) d μ 2 ) = n σ 0 2 I_X(\mu)=E(-\frac{d^2l(\mu)}{d\mu^2})=\frac{n}{\sigma_0^2} IX(μ)=E(dμ2d2l(μ))=σ02n

因为

V a r ( μ ^ ) = 1 I X ( μ ) Var(\widehat{\mu})=\frac{1}{I_X(\mu)} Var(μ )=IX(μ)1

所以 μ ^ \widehat{\mu} μ 作为 μ \mu μ的无偏估计其方差达到了 C − R C-R CR下界。

(3) Γ \Gamma Γ分布族 { Γ ( α , 1 2 α 2 ) , σ 2 > 0 } , α \{\Gamma(\alpha,\frac{1}{2\alpha^2}),\sigma^2>0\},\alpha {Γ(α,2α21),σ2>0},α为已知的.

参考答案:

x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn是对应 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn的样本值。

总体

ξ = d Γ ( α , 1 2 σ 2 ) , σ 2 > 0 \xi\stackrel{d}{=}\Gamma(\alpha,\frac{1}{2\sigma^2}),\sigma^2>0 ξ=dΓ(α,2σ21),σ2>0

总体 ξ \xi ξ的密度函数为

p ( ξ ; σ 2 ) = ( 1 2 σ 2 ) α Γ ( α ) ξ α − 1 e − 1 2 σ 0 2 ξ I ( 0 , ∞ ) ( ξ ) . p(\xi;\sigma^2)=\frac{(\frac{1}{2\sigma^2})^{\alpha}}{\Gamma(\alpha)}\xi^{\alpha-1}e^{-\frac{1}{2\sigma_0^2}\xi}I_{(0,\infty)}(\xi). p(ξ;σ2)=Γ(α)(2σ21)αξα1e2σ021ξI(0,)(ξ).

似然函数为

L ( σ 2 ) = { ∏ i = 1 n ( 1 2 σ 2 ) α Γ ( α ) x i α − 1 e − 1 2 σ 0 2 x i , x i > 0 0 , x i ≤ 0 L(\sigma^2)=\left\{ \begin{aligned} \prod\limits_{i=1}^{n}\frac{(\frac{1}{2\sigma^2})^{\alpha}}{\Gamma(\alpha)}x_i^{\alpha-1}e^{-\frac{1}{2\sigma_0^2}x_i}&,x_i>0\\ 0&,x_i \le 0 \end{aligned} \right. L(σ2)=i=1nΓ(α)(2σ21)αxiα1e2σ021xi0,xi>0,xi0 ( i = 1 , ⋯   , n ) (i=1,\cdots,n) (i=1,,n)

对数似然函数为

l ( σ 2 ) = ln ⁡ L ( σ 2 ) = − n ln ⁡ Γ ( α ) + n α ln ⁡ ( 1 2 σ 2 ) + ( α − 1 ) ∑ i = 1 n ln ⁡ x i − ∑ i = 1 n x i 2 σ 2 . \begin{array}{rl}l(\sigma^2)&=\ln L(\sigma^2)\\&=-n\ln\Gamma(\alpha)+n\alpha\ln(\frac{1}{2\sigma^2})\\&+(\alpha-1)\sum\limits_{i=1}^{n}\ln x_i-\frac{\sum\limits_{i=1}^{n}x_i}{2\sigma^2}.\end{array} l(σ2)=lnL(σ2)=nlnΓ(α)+nαln(2σ21)+(α1)i=1nlnxi2σ2i=1nxi.

d l ( σ 2 ) d σ 2 = − n α σ 2 + ∑ i = 1 n x i 2 σ 4 = 0 , \frac{dl(\sigma^2)}{d\sigma^2}=-\frac{n\alpha}{\sigma^2}+\frac{\sum\limits_{i=1}^{n}x_i}{2\sigma^4}=0, dσ2dl(σ2)=σ2nα+2σ4i=1nxi=0,

σ 2 = x ˉ 2 α . \sigma^2=\frac{\bar{x}}{2\alpha}. σ2=2αxˉ.

所以, σ 2 \sigma^2 σ2的估计量

σ 2 ^ = X ˉ 2 α . \widehat{\sigma^2}=\frac{\bar{X}}{2\alpha}. σ2 =2αXˉ.

由于

E ( σ 2 ^ ) = E ( X ˉ 2 α ) = σ 2 , E(\widehat{\sigma^2})=E(\frac{\bar{X}}{2\alpha})=\sigma^2, E(σ2 )=E(2αXˉ)=σ2,

所以, σ 2 ^ = X ˉ 2 α \widehat{\sigma^2}=\frac{\bar{X}}{2\alpha} σ2 =2αXˉ σ 2 \sigma^2 σ2的无偏估计。

V a r ( σ 2 ^ ) = V a r ( X ˉ 2 α ) = σ 0 4 n α Var(\widehat{\sigma^2})=Var(\frac{\bar{X}}{2\alpha})=\frac{\sigma_0^4}{n\alpha} Var(σ2 )=Var(2αXˉ)=nασ04

d 2 l ( σ 2 ) d ( σ 2 ) 2 = n α σ 0 4 − ∑ i = 1 n x i σ 6 \frac{d^2l(\sigma^2)}{d(\sigma^2)^2}=\frac{n\alpha}{\sigma_0^4}-\frac{\sum\limits_{i=1}^{n}x_i}{\sigma^6} d(σ2)2d2l(σ2)=σ04nασ6i=1nxi

I X ( σ 2 ) = E ( − d 2 l ( σ 2 ) d ( σ 2 ) 2 ) = n α σ 0 4 I_X(\sigma^2)=E(-\frac{d^2l(\sigma^2)}{d(\sigma^2)^2})=\frac{n\alpha}{\sigma_0^4} IX(σ2)=E(d(σ2)2d2l(σ2))=σ04nα

因为

V a r ( σ 2 ) = 1 I X ( σ 2 ) Var(\sigma^2)=\frac{1}{I_X(\sigma^2)} Var(σ2)=IX(σ2)1

所以 σ 2 ^ \widehat{\sigma^2} σ2 作为 σ 2 \sigma^2 σ2的无偏估计其方差达到了 C − R C-R CR下界。


如果您在看完以后,无论是题目还是参考解答过程有什么问题,希望不吝指出!如果有更好的解题思路或者好的问题分享,欢迎通过后台发送给我们!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值