【AI大模型】使用Python调用DeepSeek的API,原来SDK是调用这个,绝对的一分钟上手和使用

在这里插入图片描述

前言

最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把。
目前DeepSeek对接API是收费的,需要充值获取Tokens,在对话和推理过程会消耗token。

免费体验

截至2025年2月8日注册都还会赠送10元,一个月有效期,相当于有一个免费体验期,10元够发起很多次对话了。
在这里插入图片描述
具体能够发起多少次对话,我们不妨就基于这个问题,让DeepSeek给我们解答下。
根据ds给出得答案,10元大概能够调用1到5千次,那位小伙伴解答下是否正确。
在这里插入图片描述

API-Key申请

申请非常简单,直接在首页点击进入【API开发平台】>【API keys】>【创建API key】>【输入一个名称】,创建完成后,还可以修改名称,以及删除。
在这里插入图片描述

首次调用API

拿到API-Key之后,可以点击接口文档,使用首次调用API-Python例子开始尝试调用返回内容。

# Please install OpenAI SDK first: `pip3 install openai`

from openai import OpenAI

client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Hello"},
    ],
    stream=False
)

print(response.choices[0].message.content)

为什么deepseek是安装openAI SDK
这个有点意思,博主搜了下,得到回答是:DeepSeek使用OpenAI的SDK和API主要是因为OpenAI的大模型在业界具有领先地位,其标准和规范被广泛接受和使用。‌

基本概念

最小单元

Token 是模型用来表示自然语言文本的的最小单位,可以是一个词、一个数字或一个标点符号等。
DS将根据模型输入和输出的总 token 数进行计量计费。

推理模型

deepseek-reasoner 是 DeepSeek 推出的推理模型。在输出最终回答之前,模型会先输出一段思维链内容,以提升最终答案的准确性。我们的 API 向用户开放 deepseek-reasoner 思维链的内容,以供用户查看、展示、蒸馏使用。

在每一轮对话过程中,模型会输出思维链内容(reasoning_content)和最终回答(content)。在下一轮对话中,之前轮输出的思维链内容不会被拼接到上下文中,如下图所示:在这里插入图片描述

智能体

创建过AI应用和智能体的小伙伴都知道,都是基于界面可视化页面进行创建和使用。
对于API,实际上在代码层面进行智能体创建,基础的元素包括chat的人设(提示词Prompt)和用户提问两部分。

代码层对话

下面就创建一个《李白》智能体进行对话。

角色设定
先给智能体进行角色定位,就是给智能体加上提示词Prompt。
当然你也可以根据创建智能体一样进行详细设定,这里博主就简单一句话给智能体进行绑定。
一般角色设定的提示词是不会变的,只会在调优或者未能达到自己满意情况下进行提示词调整。

你是一位唐朝大诗人李白,你只能回答李白相关的问题,超出李白范围的友好提示。

用户对话
这里就是界面输入框用户输入的内容。

在这里插入图片描述

自定义界面

基于上面两个关键参数,就能够定制属于自己的一个智能体对话界面。
前提需要封装好一个api接口方法,传递用户提问的参数,最后返回DeepSeek响应的内容。

后端API
将上面代码设置成路由,可进行Get请求的API接口。
温馨提示:输出内容记得Unicode转义,同时记得设置可跨域-flask_cors。在这里插入图片描述
主要依赖Flask进行路由设置,需要先安装。

from flask import Flask, request, jsonify
from flask_cors import CORS
from openai import OpenAI
import json

app = Flask(__name__)
cors = CORS(app)  # 这将允许所有域的跨域请求

# 配置OpenAI客户端
openai_client = OpenAI(api_key="你的deepseek的key", base_url="https://api.deepseek.com")

# 系统提示(用于OpenAI API交互)
system_prompt = "你是一位唐朝大诗人李白,你只能回答李白相关的问题,超出李白范围的友好提示。"

# 用户内容(这里可以固定,也可以从GET请求的参数中获取,但为了简化,我们固定它)
# 注意:在实际应用中,用户内容应该从请求参数中安全地获取和处理
# user_content = "输出一首关于月亮的李白风格的诗"

@app.route('/generate_text/<user_content>', methods=['GET'])
def generate_text(user_content):
    try:
        # 与OpenAI API交互,生成文本
        response = openai_client.chat.completions.create(
            model="deepseek-chat",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": user_content},
            ],
            stream=False
        )
        
        # 从响应中提取生成的文本(这里假设响应结构是已知的)
        generated_text = response.choices[0].message.content

        # 默认输出的是编码值:\u300a\u6708\u4e0b\u72ec\u914c\u300b
        
        # 返回生成的文本作为API的响应
        #return jsonify(json.loads(json.dumps({"generated_text": generated_text})))
        return jsonify({"generated_text": generated_text})
    except Exception as e:
        # 在出现异常时返回错误信息
        return jsonify({"error": str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)

在这里插入图片描述

前端代码
同样是使用DeepSeek进行代码生成,直接生成一个对话vue3前端界面,需要进行多轮对话进行调整满意的vue代码。
然后进行api接口调用测试效果。

<template>
	<div class="chat-interface">
		<el-card shadow="hover">
		<div class="chat-history">
			<div v-for="(message, index) in messages" :key="index" class="chat-message">
			<div :class="{'message-user': message.type === 'user', 'message-bot': message.type === 'bot'}">
				<span class="avatar" :style="{ backgroundColor: message.type === 'user' ? '#409EFF' : '#F56C6C' }">
					{{ message.type === 'user' ? '我' : '李白' }}
				</span>
				<div class="content">
				{{ message.content }}
				</div>
			</div>
			</div>
		</div>
		<div class="input-area">
			<el-input v-model="userInput" placeholder="输入你的问题" class="input-box" clearable></el-input>
			<el-button type="primary" @click="sendMessage" :loading="loadingFlag">发送</el-button>
		</div>
		</el-card>
	</div>
</template>

<script setup lang="ts" name="batchPortfolio">
import { ref } from 'vue';
import axios from 'axios';

const loadingFlag=ref(false)
const userInput = ref('');
const messages: { type: 'user' | 'bot'; content: string }[]= ref([]);

const sendMessage = async () => {
	if (userInput.value.trim()) {
		messages.value.push({ type: 'user', content: `${userInput.value}` });

		loadingFlag.value=true;
		const response = await axios.get(`http://127.0.0.1:5000/generate_text/${userInput.value}`);
		loadingFlag.value=false;
		// 机器人回复
		setTimeout(() => {
			messages.value.push({ type: 'bot', content: `${response.data.generated_text}` });
		}, 100);
		
		// // 模拟机器人回复
		// setTimeout(() => {
		// 	messages.value.push({ type: 'bot', content: `机器人回复: ${userInput.value.split(' ').join(' ')} 的回复` });
		// }, 1000);

		userInput.value = '';
	}
};

</script>

<style scoped lang="scss">
.chat-interface {
  max-width: 600px;
  margin: 0 auto;
  padding: 20px;
  box-shadow: 0 2px 12px rgba(0, 0, 0, 0.1);
  border-radius: 8px;
  background-color: #fff;
}

.chat-history {
  padding: 16px;
  overflow-y: auto;
  max-height: 400px;
  border-bottom: 1px solid #ebeef5;
}

.chat-message {
  margin-bottom: 16px;
  align-items: center;
}

.message-user {
  display: flex;
  align-items: center;
  justify-content: flex-end;

	line-height: 40px;
	text-align: center;
	color: #fff;
}
.message-bot {
  display: flex;
  align-items: center;

	line-height: 40px;
	text-align: center;
	color: #fff;
}

.avatar {
  width: 40px;
  height: 40px;
  border-radius: 50%;
  margin-right: 12px;
}

.message-user .avatar {
  background-color: #409EFF;
}

.message-bot .avatar {
  background-color: #F56C6C;
}

.content {
  max-width: calc(100% - 52px); /* 40px avatar + 12px margin */
  padding: 8px 16px;
  border-radius: 4px;
  background-color: #f0f0f0;
  color: #333;
}

.message-bot .content {
  background-color: #fff3e0;
  justify-content: flex-start;
}

.message-user .content {
  background-color: #e6f7ff;
}

.input-area {
  display: flex;
  padding: 16px;
  border-top: 1px solid #ebeef5;
}

.input-box {
  flex: 1;
  border-radius: 4px;
}

.el-button {
  margin-left: 12px;
}


</style>

在这里插入图片描述

总结

DeepSeek的API对接,绝对是博主目前对接最快的一个,非常简洁清晰,没有那么多花里胡哨的东西和文档,从创建api-key到直接调用api和返回数据不到一分钟就搞定。
当然,后续生成vue对话界面肯定需要自己花点时间多轮对话生成,以及python封装成路由访问的api。同样也是可以使用DS完成。

推荐文章

【AI大模型】使用Python调用DeepSeek的API,原来SDK是调用这个,绝对的一分钟上手和使用

【AI大模型】为什么说更倾向于使用DeepSeek,清爽简洁,输出内容质量高,清晰明了得思考过程,真的值得拥有

【大模型】DeepSeek与chatGPT的区别以及自身的优势

<think>好的,用户想了解如何调用DeepSeek。首先需要明确用户具体指的是哪个DeepSeek的产品或服务,因为可能有不同的API,比如大模型、搜索引擎或其他工具。常见的可能是他们的AI模型API,比如DeepSeek-R1或者Chat模型。 接下来,用户可能是开发者,想集成DeepSeek的功能到自己的应用中,所以需要步骤化的指导。要调用API,通常需要几个步骤:注册账号、获取API密钥、安装SDK或发送HTTP请求、编写调用代码。 可能需要提醒用户查看官方文档,因为具体参数端点可能变化。另外,注意权限费用问题,比如API调用的限制计费方式。还要考虑用户可能遇到的常见问题,比如认证失败、请求格式错误或网络问题,需要提供相应的解决建议。 需要检查是否有需要区分的不同服务类型,比如自然语言处理、图像处理等,确保回答准确。最后,用简洁的中文分步骤说明,并给出示例代码,帮助用户快速上手。</think>要调用DeepSeekAPI服务(例如其AI模型),可按照以下步骤操作: 1. **注册账号** - 访问[DeepSeek官网](https://www.deepseek.com/) - 创建账号并完成实名认证(部分API需要) 2. **获取API密钥** - 进入控制台 > API管理 - 创建新应用并获取API Key(通常以`sk-`开头) 3. **调用API示例** ```python import requests API_URL = "https://api.deepseek.com/v1/chat/completions" API_KEY = "your_api_key_here" headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } data = { "model": "deepseek-chat", "messages": [ {"role": "user", "content": "你好,请介绍一下上海"} ] } response = requests.post(API_URL, json=data, headers=headers) print(response.json()['choices'][0]['message']['content']) ``` **注意事项**: - 计费方式:按token数量计费,具体价格参考官网 - 速率限制:免费用户通常有5次/分钟的限制 - 支持功能:文本生成、对话、数据分析等 - 最新文档:建议始终参考[官方文档](https://platform.deepseek.com/api-docs/) 如果调用搜索引擎服务,通常需要通过定制化接口或合作接入,建议直接联系商务团队。
评论 102
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈小5

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值