Part II. S4. Sub-part1. 基于区间直觉模糊混合平均(几何)算子的多属性决策方法

4.1 基于区间直觉模糊混合平均算子的多属性决策方法


  1. 区间直觉模糊加权平均算子

  定义4.1 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , . . . , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,...,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,...,n)是一组区间直觉模糊数。若 IIFWA ⁡ \operatorname{IIFWA} IIFWA是一个映射: F I n → F I F_{I}^{n} \rightarrow F_{I} FInFI,使得
IIFWA ⁡ ω ( A ~ 1 , A ~ 2 , ⋯   , A ~ n ) = ω 1 A ~ 1 ⊕ ω 2 A ~ 2 ⊕ ⋯ ⊕ ω n A ~ n (4.1) \color{red} { \operatorname{IIFWA}_{\omega}\left(\tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = \omega_{1}\tilde{A}_{1} \oplus \omega_{2}\tilde{A}_{2} \oplus \cdots \oplus \omega_{n}\tilde{A}_{n} \tag{4.1} } IIFWAω(A~1,A~2,,A~n)=ω1A~1ω2A~2ωnA~n(4.1)

  则称 IIFWA ⁡ \operatorname{IIFWA} IIFWA区间直觉模糊加权平均算子,其中, ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) {\tilde{A}_{j}} = \left\langle[\mu_{jL},\mu_{jU}],[\nu_{jL},\nu_{jU}]\right\rangle\left(j = 1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1

  特别地,若 ω = ( 1 n , 1 n , ⋯   , 1 n ) T \boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}\right)}^{T} ω=(n1,n1,,n1)T,则 IIFWA ⁡ \operatorname{IIFWA} IIFWA算子退化为区间直觉模糊平均算子
IIFA ⁡ ( A ~ 1 , A ~ 2 , ⋯   , A ~ n ) = 1 n ( A ~ 1 ⊕ A ~ 2 ⊕ ⋯ ⊕ A ~ n ) (4.2) \operatorname{IIFA}\left(\tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = \frac{1}{n}\left(\tilde{A}_{1} \oplus \tilde{A}_{2} \oplus \cdots \oplus \tilde{A}_{n}\right) \tag{4.2} IIFA(A~1,A~2,,A~n)=n1(A~1A~2A~n)(4.2)

  定理4.1 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , . . . , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,...,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,...,n)是一组区间直觉模糊数,则由 IIFWA ⁡ \operatorname{IIFWA} IIFWA算子运算得到的结果仍然是区间直觉模糊数,且
IIFWA ⁡ ω ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ [ 1 − ∏ j = 1 n ( 1 − μ j L ) ω j , 1 − ∏ j = 1 n ( 1 − μ j U ) ω j ] , [ ∏ j = 1 n ( ν j L ) ω j , ∏ j = 1 n ( ν j U ) ω j ] ⟩ ‾ (4.3) \color{red} { \underline { \operatorname{IIFWA}_{\omega}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ \left[1 - {\prod_{j=1}^{n}\left(1 - \mu_{jL}\right)}^{\omega_{j}}, 1 - {\prod_{j=1}^{n}\left(1 - \mu_{jU}\right)}^{\omega_{j}}\right], \left[{\prod_{j=1}^{n}{\left(\nu_{jL}\right)}^{\omega_{j}}}, {\prod_{j=1}^{n}{\left(\nu_{jU}\right)}^{\omega_{j}}}\right] }\right\rangle } } \tag{4.3} IIFWAω(A~1,A~2,...A~n)=[1j=1n(1μjL)ωj,1j=1n(1μjU)ωj],[j=1n(νjL)ωj,j=1n(νjU)ωj](4.3)


  2. 区间直觉模糊有序平均算子

  定义4.2 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)是一组区间直觉模糊数。若 I I F W A IIFWA IIFWA是一个映射: F I n → F I F_{I}^{n} \rightarrow F_{I} FInFI,使得
IIFOWA ⁡ ω ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = ω 1 A ~ σ ( 1 ) ⊕ ω 2 A ~ σ ( 2 ) ⊕ ⋯ ⊕ ω n A ~ σ ( n ) (4.4) \color{red} { \operatorname{IIFOWA}_{\omega}\left(\tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = \omega_{1}\tilde{A}_{\sigma(1)} \oplus \omega_{2}\tilde{A}_{\sigma(2)} \oplus \cdots \oplus \omega_{n}\tilde{A}_{\sigma(n)} \tag{4.4} } IIFOWAω(A~1,A~2,...,A~n)=ω1A~σ(1)ω2A~σ(2)ωnA~σ(n)(4.4)

  则称 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA区间直觉模糊有序平均算子,其中 ω = ( ω 1 , ω 2 , ⋯   . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},\cdots.,\omega_{n}\right)}^{T} ω=(ω1,ω2,.,ωn)T为与 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA算子相关联的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1 ( σ ( 1 ) , σ ( 2 ) , . . . , σ ( n ) ) \left(\sigma(1),\sigma(2),...,\sigma(n)\right) (σ(1),σ(2),...,σ(n))为数组 ( 1 , 2 , ⋯   . , n ) \left(1,2,\cdots.,n\right) (1,2,.,n)的一个置换,使得对任意k,有 A ~ σ ( k 1 ) ≥ A ~ σ ( k ) \tilde{A}_{\sigma(k1)}\geq\tilde{A}_{\sigma(k)} A~σ(k1)A~σ(k),即 A ~ σ ( k ) \tilde{A}_{\sigma(k)} A~σ(k)是区间直觉模糊数 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) {\tilde{A}_{j}} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j = 1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)按区间直觉模糊数的排序规则确定的第k个最大区间直觉模糊数。

  特别地,若 ω = ( 1 n , 1 n , ⋯   , 1 n ) T \boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}\right)}^{T} ω=(n1,n1,,n1)T,则 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA算子退化为区间直觉模糊平均算子:
IIFOWA ⁡ ω ( A ~ 1 , A ~ 2 , ⋯   , A ~ n ) = 1 n ( A ~ 1 ⊕ A ~ 2 ⊕ . . . ⊕ A ~ n ) {\operatorname{IIFOWA}_{\omega}}\left( \tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = \frac{1}{n}\left(\tilde{A}_{1} \oplus \tilde{A}_{2}\oplus...\oplus\tilde{A}_{n}\right) IIFOWAω(A~1,A~2,,A~n)=n1(A~1A~2...A~n)

  定理4.2 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,...,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,...,n)是一组区间直觉模糊数, A ~ σ ( k ) \tilde{A}_{\sigma(k)} A~σ(k)是区间直觉模糊数 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j = 1,2,...,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,...,n)按区间直觉模糊数的排序规则确定的第k个最大区间直觉模糊数,则有 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA算子运算得到的结果仍然是区间直觉模糊数,且

IIFOWA ⁡ ω ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ [ 1 − ∏ j = 1 n ( 1 − μ σ ( j ) L ) ω j , 1 − ∏ j = 1 n ( 1 − μ σ ( j ) U ) ω j ] , [ ∏ j = 1 n ( ν σ ( j ) L ) ω j , ∏ j = 1 n ( ν σ ( j ) U ) ω j ] ⟩ ‾ (4.5) \color{red} { \underline { \operatorname{IIFOWA}_{\omega}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ \left[1 - {\prod_{j=1}^{n}\left(1 - \mu_{\sigma\left(j\right) L}\right)}^{\omega_{j}}, 1 - {\prod_{j=1}^{n}\left(1 - \mu_{\sigma\left(j\right) U}\right)}^{\omega_{j}}\right], \left[{\prod_{j=1}^{n}{\left(\nu_{\sigma\left(j\right) L}\right)}^{\omega_{j}}}, {\prod_{j=1}^{n}{\left(\nu_{\sigma\left(j\right) U}\right)}^{\omega_{j}}}\right] }\right\rangle } } \tag{4.5} IIFOWAω(A~1,A~2,...A~n)=[1j=1n(1μσ(j)L)ωj,1j=1n(1μσ(j)U)ωj],[j=1n(νσ(j)L)ωj,j=1n(νσ(j)U)ωj](4.5)

  其中, ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T为与 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA相关联的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1


  3. 区间直觉模糊混合平均算子

  定义4.3 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)是一组区间直觉模糊数。若 IIFHA ⁡ \operatorname{IIFHA} IIFHA是一个映射: F I n → F I F_{I}^{n} \rightarrow F_{I} FInFI,使得
IIFHA ⁡ w ( A ~ 1 , A ~ 2 , ⋯   , A ~ n ) = w 1 A ′ ~ σ ( 1 ) ⊕ w 2 A ′ ~ σ ( 2 ) ⊕ ⋯ ⊕ w n A ′ ~ σ ( n ) (4.6) \color{red} { {\operatorname{IIFHA}_{w}}\left( \tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = w_{1}\tilde{A^{'}}_{\sigma(1)} \oplus w_{2}\tilde{A^{'}}_{\sigma(2)}\oplus \cdots \oplus w_{n}\tilde{A^{'}}_{\sigma(n)} \tag{4.6} } IIFHAw(A~1,A~2,,A~n)=w1A~σ(1)w2A~σ(2)wnA~σ(n)(4.6)

  则称 IIFHA ⁡ \operatorname{IIFHA} IIFHA为区间直觉模糊混合平均算子,其中 w = ( w 1 , w 2 , ⋯   , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},\cdots,w_{n}\right)}^{T} w=(w1,w2,,wn)T为与 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , ⋯   , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,\cdots,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,,n),j=1nwj=1 ( A ′ ~ σ ( 1 ) , A ′ ~ σ ( 2 ) , ⋯   , A ′ ~ σ ( n ) ) \left(\tilde{A^{'}}_{\sigma(1)},\tilde{A^{'}}_{\sigma(2)},\cdots,\tilde{A^{'}}_{\sigma(n)}\right) (A~σ(1),A~σ(2),,A~σ(n))为加权的区间直觉模糊数数组 ( A ′ ~ 1 , A ′ ~ 2 , ⋯   , A ′ ~ n ) \left(\tilde{A^{'}}_{1},\tilde{A^{'}}_{2},\cdots,\tilde{A^{'}}_{n}\right) (A~1,A~2,,A~n)的一个置换,使得对任意k,有 A ′ ~ σ ( k − 1 ) ≥ A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k-1)}\geq\tilde{A^{'}}_{\sigma(k)} A~σ(k1)A~σ(k),即 A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k)} A~σ(k)是区间直觉模糊数 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)按直觉模糊数的排序规则确定的第k个最大区间直觉模糊数。 ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , ⋯   , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,\cdots,n\right) A~j=μj,νj(j=1,2,,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , ⋯   , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,\cdots,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,,n),j=1nωj=1 n n n为平衡系数。

  特别地,若 w = ( 1 n , 1 n , ⋯   , 1 n ) T \boldsymbol{w} = {\left(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}\right)}^{T} w=(n1,n1,,n1)T,则 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子退化为区间直觉模糊加权平均算子 IIFWA ⁡ \operatorname{IIFWA} IIFWA;若 ω = ( 1 n , 1 n , ⋯   , 1 n ) T \boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}\right)}^{T} ω=(n1,n1,,n1)T,则 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子退化为区间直觉模糊有序加权平均算子 IIFOWA ⁡ \operatorname{IIFOWA} IIFOWA


  定理4.3 设 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)是一组区间直觉模糊数,令 A ′ ~ j = n ω j ⟨ [ μ j L ′ , μ j U ′ ] , [ ν j L ′ , ν j U ′ ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A^{'}}_{j} = \color{red}{n\omega_{j}} \left\langle \left[ \mu^{'}_{jL},\mu^{'}_{jU}\right], \left[ \nu^{'}_{jL},\nu^{'}_{jU} \right] \right\rangle \left(j=1,2,\cdots,n\right) A~j=nωj[μjL,μjU],[νjL,νjU](j=1,2,,n) A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k)} A~σ(k)是区间直觉模糊数 A ~ j = ⟨ [ μ j L , μ j U ] , [ ν j L , ν j U ] ⟩ ( j = 1 , 2 , ⋯   , n ) \tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right) A~j=[μjL,μjU],[νjL,νjU](j=1,2,,n)中按直觉模糊数的排序规则确定的第k个最大区间直觉模糊数,则有 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子运算得到的结果仍然是区间直觉模糊数,且

IIFHA ⁡ ω , w ( A ~ 1 , A ~ 2 , ⋯   , A ~ n ) = ⟨ [ 1 − ∏ j = 1 n ( 1 − μ σ ( j ) L ′ ) ω j , 1 − ∏ j = 1 n ( 1 − μ σ ( j ) U ′ ) ω j ] , [ ∏ j = 1 n ( ν σ ( j ) L ′ ) ω j , ∏ j = 1 n ( ν σ ( j ) U ′ ) ω j ] ⟩ ‾ (4.7) \color{red} { \underline { \operatorname{IIFHA}_{\omega,w}\left({\tilde{A}_{1}},{\tilde{A}_{2}},\cdots,{\tilde{A}_{n}}\right) = \left\langle{ \left[ 1-{\prod_{j=1}^{n}\left(1-\mu^{'}_{\sigma(j)L}\right)}^{\omega_{j}}, 1-{\prod_{j=1}^{n}\left(1-\mu^{'}_{\sigma(j)U}\right)}^{\omega_{j}}\right], \left[ {\prod_{j=1}^{n}{\left(\nu^{'}_{\sigma(j)L}\right)}^{\omega_{j}}}, {\prod_{j=1}^{n}{\left(\nu^{'}_{\sigma(j)U}\right)}^{\omega_{j}}} \right] }\right\rangle } } \tag{4.7} IIFHAω,w(A~1,A~2,,A~n)=[1j=1n(1μσ(j)L)ωj,1j=1n(1μσ(j)U)ωj],[j=1n(νσ(j)L)ωj,j=1n(νσ(j)U)ωj](4.7)

  其中, w = ( w 1 , w 2 , ⋯   , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},\cdots,w_{n}\right)}^{T} w=(w1,w2,,wn)T为与 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , ⋯   , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,\cdots,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,,n),j=1nwj=1
ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , ⋯   , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,\cdots,n\right) A~j=μj,νj(j=1,2,,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , ⋯   , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,\cdots,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,,n),j=1nωj=1 n n n为平衡系数。


  4.基于区间直觉模糊混合平均算子的多属性决策步骤与实例分析

  基于区间直觉模糊混合平均算子 IIFHA ⁡ \operatorname{IIFHA} IIFHA的多属性决策步骤如下:

  S1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , ⋯   , Y m } Y=\left\{Y_{1},Y_{2},\cdots,Y_{m}\right\} Y={Y1,Y2,,Ym}和属性集 G = { G 1 , G 2 , ⋯   , G n } G=\left\{G_{1},G_{2},\cdots,G_{n}\right\} G={G1,G2,,Gn}

  S2 获取多属性决策问题中方案 Y i ∈ Y Y_{i} \in Y YiY关于属性 G j ∈ G G_{j} \in G GjG的区间直觉模糊特征信息,构建区间直觉模糊决策矩阵 F F F

  S3 确定多属性决策问题各属性的权重,得到属性权重向量 ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T

  S4 利用正态分布赋权法等确定与 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子相关联的权重向量 w = ( w 1 , w 2 , ⋯   , w n ) T w = {\left(w_{1},w_{2},\cdots,w_{n}\right)}^{T} w=(w1,w2,,wn)T

  S5 利用式 ( 4.7 ) \left(4.7\right) (4.7)计算方案 Y i Y_{i} Yi的综合属性值 d ~ i = IIFHA ⁡ ω , w ( F ~ i 1 , ( F ~ i 2 , ⋯   , ( F ~ i n ) \tilde{d}_{i} = \operatorname{IIFHA}_{\omega,w}\left(\tilde{F}_{i1},(\tilde{F}_{i2},\cdots,(\tilde{F}_{in}\right) d~i=IIFHAω,w(F~i1,(F~i2,,(F~in)。首先利用属性权重 ω = ( ω 1 , ω 2 , ⋯   , ω n ) T \omega = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T} ω=(ω1,ω2,,ωn)T和平衡系数 n n n计算加权的区间直觉模糊数 F ′ ~ i j = n ω F ~ i j \tilde{F^{'}}_{ij} =n\omega\tilde{F}_{ij} F~ij=nωF~ij,然后利用区间直觉模糊数的排序规则对 F ′ ~ i j ( j = 1 , 2 , . . . , n ) \tilde{F^{'}}_{ij}\left(j=1,2,...,n\right) F~ij(j=1,2,...,n)进行排序,得到区间直觉模糊数组 F ′ ~ σ ( 1 ) , F ′ ~ σ ( 2 ) , ⋯   , F ′ ~ σ ( n ) \tilde{F^{'}}_{\sigma(1)},\tilde{F^{'}}_{\sigma(2)},\cdots,\tilde{F^{'}}_{\sigma(n)} F~σ(1),F~σ(2),,F~σ(n);最后根据与 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子相关联的权重向量 w = ( w 1 , w 2 , ⋯   , w n ) T w = {\left(w_{1},w_{2},\cdots,w_{n}\right)}^{T} w=(w1,w2,,wn)T计算方案 Y i Y_{i} Yi的综合属性值 d ~ i = IIFHA ⁡ ω , w ( F ~ i 1 , ( F ~ i 2 , ⋯   , ( F ~ i n ) \tilde{d}_{i} = \operatorname{IIFHA}_{\omega,w}\left(\tilde{F}_{i1},(\tilde{F}_{i2},\cdots,(\tilde{F}_{in}\right) d~i=IIFHAω,w(F~i1,(F~i2,,(F~in)

  S6 计算方案 Y i Y_{i} Yi的综合属性值 d ~ i \tilde{d}_{i} d~i的得分值 s ( d ~ i ) s\left(\tilde{d}_{i}\right) s(d~i)和精确值 h ( d ~ i ) h\left(\tilde{d}_{i}\right) h(d~i),确定 d ~ i ( i = 1 , 2 , ⋯   , m ) \tilde{d}_{i}(i=1,2,\cdots,m) d~i(i=1,2,,m)的不增排列序列,并利用排序结果对方案 Y i ( i = 1 , 2 , ⋯   , m ) Y_{i}(i=1,2,\cdots,m) Yi(i=1,2,,m)进行优劣排序。

   示 例 4.1 \color{red}{示例4.1} 4.1

  考虑突发事件应急预案评问题。突发事件应急预案是针对各种突发事件类型而事先制订的一套能迅速、有效、有序解决问题的行动计划或方案,为全面、客观地评判应急预案处置突发事件的能力,应从预案处置的快速性( G 1 G_1 G1)、预案内容的合理性( G 2 G_2 G2)、预案保障的充分性( G 3 G_3 G3)、预案消耗费用的合理性( G 4 G_4 G4)以及预案的广泛适用性( G 5 G_5 G5)等五个方面进行综合评价。假设现有五个应急预案 Y i ( i = 1 , 2 , 3 , 4 , 5 ) Y_i(i=1,2,3,4,5) Yi(i=1,2,3,4,5)专家组根据自己的知识、经验以及已有的统计数据确定出每个应急预案 Y i ( i = 1 , 2 , 3 , 4 , 5 ) Y_i(i=1,2,3,4,5) Yi(i=1,2,3,4,5)关于属性 G i ( i = 1 , 2 , 3 , 4 , 5 ) G_i(i=1,2,3,4,5) Gi(i=1,2,3,4,5)的区间直觉模糊评价信息,得到的区间直觉模糊决策矩阵 F = ( ⟨ [ μ i j L , μ i j U ] , [ ν i j L , ν i j U ] ⟩ ) 5 × 5 F={\left(\left\langle [\mu_{ijL},\mu_{ijU}],[\nu_{ijL},\nu_{ijU}]\right\rangle\right)}_{5×5} F=([μijL,μijU],[νijL,νijU])5×5

G 1 G_1 G1 G 2 G_2 G2 G 3 G_3 G3 G 4 G_4 G4 G 5 G_5 G5
Y 1 Y_1 Y1 ⟨ [ 0.5 , 0.6 ] , [ 0.1 , 0.3 ] ⟩ \left\langle[0.5,0.6],[0.1,0.3]\right\rangle [0.5,0.6],[0.1,0.3] ⟨ [ 0.3 , 0.4 ] , [ 0.4 , 0.5 ] ⟩ \left\langle[0.3,0.4],[0.4,0.5]\right\rangle [0.3,0.4],[0.4,0.5] ⟨ [ 0.1 , 0.3 ] , [ 0.5 , 0.6 ] ⟩ \left\langle[0.1,0.3],[0.5,0.6]\right\rangle [0.1,0.3],[0.5,0.6] ⟨ [ 0.7 , 0.8 ] , [ 0.1 , 0.2 ] ⟩ \left\langle[0.7,0.8],[0.1,0.2]\right\rangle [0.7,0.8],[0.1,0.2] ⟨ [ 0.5 , 0.7 ] , [ 0.1 , 0.3 ] ⟩ \left\langle[0.5,0.7],[0.1,0.3]\right\rangle [0.5,0.7],[0.1,0.3]
Y 2 Y_2 Y2 ⟨ [ 0.4 , 0.5 ] , [ 0.2 , 0.4 ] ⟩ \left\langle[0.4,0.5],[0.2,0.4]\right\rangle [0.4,0.5],[0.2,0.4] ⟨ [ 0.4 , 0.6 ] , [ 0.2 , 0.4 ] ⟩ \left\langle[0.4,0.6],[0.2,0.4]\right\rangle [0.4,0.6],[0.2,0.4] ⟨ [ 0.3 , 0.5 ] , [ 0.4 , 0.5 ] ⟩ \left\langle[0.3,0.5],[0.4,0.5]\right\rangle [0.3,0.5],[0.4,0.5] ⟨ [ 0.6 , 0.7 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.6,0.7],[0.2,0.3]\right\rangle [0.6,0.7],[0.2,0.3] ⟨ [ 0.7 , 0.8 ] , [ 0.1 , 0.2 ] ⟩ \left\langle[0.7,0.8],[0.1,0.2]\right\rangle [0.7,0.8],[0.1,0.2]
Y 3 Y_3 Y3 ⟨ [ 0.6 , 0.6 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.6,0.6],[0.2,0.3]\right\rangle [0.6,0.6],[0.2,0.3] ⟨ [ 0.7 , 0.8 ] , [ 0.1 , 0.2 ] ⟩ \left\langle[0.7,0.8],[0.1,0.2]\right\rangle [0.7,0.8],[0.1,0.2] ⟨ [ 0.4 , 0.5 ] , [ 0.3 , 0.5 ] ⟩ \left\langle[0.4,0.5],[0.3,0.5]\right\rangle [0.4,0.5],[0.3,0.5] ⟨ [ 0.4 , 0.6 ] , [ 0.1 , 0.3 ] ⟩ \left\langle[0.4,0.6],[0.1,0.3]\right\rangle [0.4,0.6],[0.1,0.3] ⟨ [ 0.6 , 0.7 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.6,0.7],[0.2,0.3]\right\rangle [0.6,0.7],[0.2,0.3]
Y 4 Y_4 Y4 ⟨ [ 0.3 , 0.5 ] , [ 0.3 , 0.4 ] ⟩ \left\langle[0.3,0.5],[0.3,0.4]\right\rangle [0.3,0.5],[0.3,0.4] ⟨ [ 0.5 , 0.7 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.5,0.7],[0.2,0.3]\right\rangle [0.5,0.7],[0.2,0.3] ⟨ [ 0.6 , 0.8 ] , [ 0.1 , 0.2 ] ⟩ \left\langle[0.6,0.8],[0.1,0.2]\right\rangle [0.6,0.8],[0.1,0.2] ⟨ [ 0.5 , 0.6 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.5,0.6],[0.2,0.3]\right\rangle [0.5,0.6],[0.2,0.3] ⟨ [ 0.7 , 0.8 ] , [ 0.1 , 0.2 ] ⟩ \left\langle[0.7,0.8],[0.1,0.2]\right\rangle [0.7,0.8],[0.1,0.2]
Y 5 Y_5 Y5 ⟨ [ 0.3 , 0.4 ] , [ 0.4 , 0.5 ] ⟩ \left\langle[0.3,0.4],[0.4,0.5]\right\rangle [0.3,0.4],[0.4,0.5] ⟨ [ 0.2 , 0.4 ] , [ 0.3 , 0.4 ] ⟩ \left\langle[0.2,0.4],[0.3,0.4]\right\rangle [0.2,0.4],[0.3,0.4] ⟨ [ 0.3 , 0.4 ] , [ 0.3 , 0.4 ] ⟩ \left\langle[0.3,0.4],[0.3,0.4]\right\rangle [0.3,0.4],[0.3,0.4] ⟨ [ 0.3 , 0.5 ] , [ 0.4 , 0.5 ] ⟩ \left\langle[0.3,0.5],[0.4,0.5]\right\rangle [0.3,0.5],[0.4,0.5] ⟨ [ 0.4 , 0.6 ] , [ 0.2 , 0.3 ] ⟩ \left\langle[0.4,0.6],[0.2,0.3]\right\rangle [0.4,0.6],[0.2,0.3]

抑制属性 G j ( j = 1 , 2 , 3 , 4 , 5 ) G_{j}(j=1,2,3,4,5) Gj(j=1,2,3,4,5)的权重向量为 ω = ( 0.35 , 0.2 , 0.2 , 0.1 , 0.15 ) T \omega={(0.35,0.2,0.2,0.1,0.15)}^{T} ω=(0.35,0.2,0.2,0.1,0.15)T,基于 正 态 分 布 赋 权 法 \color{red}{正态分布赋权法} 确定的与 IIFHA ⁡ \operatorname{IIFHA} IIFHA算子相关联的权重向量为 w = ( 0.112 , 0.236 , 0.304 , 0.236 , 0.112 ) T w={(0.112,0.236,0.304,0.236,0.112)}^{T} w=(0.112,0.236,0.304,0.236,0.112)T

  代码如下:

## 计算区间直觉模糊混合平均算子
import numpy as np

# 计算加权区间直觉模糊决策矩阵F'
def calculate_weight_IIFHA_matrix(IIFD_matrix,IIFW_attr):
    # IIFD_matrix的shape为(m×4×n),分别表示m个方案、n个属性的区间直觉模糊数(u_L,u_U,v_L,v_U)
    # IIFW_attr的shape为(1×n)表示n个属性的直觉模糊数的权重
    # 计算表达式: [u_ijL_'] = 1 - (1 - u_ijL)^λ
    #              [u_ijU_'] = 1 - (1 - u_ijU)^λ
    #              [v_ijU_'] = (v_ijL)^λ
    #              [v_ijU_'] = (v_ijU)^λ
    weight_IIFW_attr = IIFD_matrix.shape[0]*IIFW_attr
    
    weighted_IIFD_matrix = np.zeros(IIFD_matrix.shape)
    for i in range(IFD_matrix.shape[0]):
        weighted_IIFD_matrix[i][0] = 1 - np.power(1 - IIFD_matrix[i][0], weight_IIFW_attr)
        weighted_IIFD_matrix[i][1] = 1 - np.power(1 - IIFD_matrix[i][1], weight_IIFW_attr)
        weighted_IIFD_matrix[i][2] = np.power(IIFD_matrix[i][2],weight_IIFW_attr)
        weighted_IIFD_matrix[i][3] = np.power(IIFD_matrix[i][3],weight_IIFW_attr)
    return weighted_IIFD_matrix

# 计算得分值并对方案进行排序
def calculate_IIFHA_scores_and_ranks(weighted_IIFHA_matrix_):
    # 得分值:score = (u_L + u_U - v_L - v_U)/2
    # 精度值:h = (u_L + u_U + v_L + v_U)/2
    # 计算得分值:
    scores = np.zeros((weighted_IIFHA_matrix_.shape[0],weighted_IIFHA_matrix_.shape[2]))
    for i in range(weighted_IIFHA_matrix_.shape[0]):
        for j in range(weighted_IIFHA_matrix_.shape[2]):
            scores[i][j] = (weighted_IIFHA_matrix_[i][0][j] + \
                            weighted_IIFHA_matrix_[i][1][j] - \
                            weighted_IIFHA_matrix_[i][2][j] - \
                            weighted_IIFHA_matrix_[i][3][j])/2
    # 获取排序索引,index矩阵为m×n,表示m个方案n个属性,是对属性进行排序
    index = np.argsort(-scores)
    # 然后按照索引对矩阵进行重新调整,ranked_IIFHA_matrix的尺寸为(m,4,n)
    ranked_IIFHA_matrix = np.zeros(weighted_IIFHA_matrix_.shape)
    for i in range(index.shape[0]):
        for j in range(index.shape[1]):
            ranked_IIFHA_matrix[i][0][j] = weighted_IIFHA_matrix_[i][0][index[i][j]]
            ranked_IIFHA_matrix[i][1][j] = weighted_IIFHA_matrix_[i][1][index[i][j]]
            ranked_IIFHA_matrix[i][2][j] = weighted_IIFHA_matrix_[i][2][index[i][j]]
            ranked_IIFHA_matrix[i][3][j] = weighted_IIFHA_matrix_[i][3][index[i][j]]
    # 返回结果<scores,index,ranked_IIFHA_matrix>
    return scores,index,ranked_IIFHA_matrix


# 计算IIFHA综合评价结果
def calculate_IIFHA_comprehensive_evaluation_results(ranked_IIFHA_matrix,IIFW_IIFHA):
    # ranked_IIFHA_matrix为有序区间直觉模糊决策矩阵,尺寸为(m×4×n),其中m表示方案数、n表示属性数
    # IIFW_IIFHA为与IIFHA相关联的权重值,尺寸为(1×n)
    
    # 初始化结果矩阵,尺寸为(4×m)
    comprehensive_evaluation_matrix = np.zeros((4,ranked_IIFHA_matrix.shape[0]))
    # 按照公式2.23依次计算各方案的综合评价结果
    for i in range(ranked_IIFHA_matrix.shape[0]):
        DM_i = ranked_IIFHA_matrix[i]
        mu_L = 1 # 初始化“属于”下界
        mu_U = 1 # 初始化“属于”上界
        nu_L = 1 # 初始化“不属于”下界
        nu_U = 1 # 初始化“不属于”上界
        for j in range(DM_i.shape[1]):
            mu_L *= np.power(1 - DM_i[0][j],IIFW_IIFHA[j])
            mu_U *= np.power(1 - DM_i[1][j],IIFW_IIFHA[j])
            nu_L *= np.power(DM_i[2][j],IIFW_IIFHA[j])
            nu_U *= np.power(DM_i[3][j],IIFW_IIFHA[j])
        comprehensive_evaluation_matrix[0][i] = 1 - mu_L
        comprehensive_evaluation_matrix[1][i] = 1 - mu_U
        comprehensive_evaluation_matrix[2][i] = nu_L
        comprehensive_evaluation_matrix[3][i] = nu_U
    # 返回结果矩阵
    return comprehensive_evaluation_matrix

# 计算IIFHA综合评价结果的得分值并排序
def calculate_IIFHA_comprehensive_scores_and_rank(comprehensive_evaluation_matrix):
    # comprehensive_evaluation_matrix的尺寸为(4×m),其中m表示方案数
    
    # 计算各方案的综合得分值,计算公式为: score = (u_L + u_U - v_L - v_U)/2
    comprehensive_scores = (comprehensive_evaluation_matrix[0] + comprehensive_evaluation_matrix[1] - \
                            comprehensive_evaluation_matrix[2] - comprehensive_evaluation_matrix[3])/2
    # 对各方案的综合得分值按从大到小进行排序
    comprehensive_index = np.argsort(-comprehensive_scores)
    # 返回综合评价得分值和排序结果
    return comprehensive_scores,comprehensive_index



# S1.区间直觉模糊决策矩阵F
# 每一列分别表示u_L,u_U,v_L,v_U
IIFD_matrix = np.array([[[0.5,0.3,0.1,0.7,0.5],[0.6,0.4,0.3,0.8,0.7],[0.1,0.4,0.5,0.1,0.1],[0.3,0.5,0.6,0.2,0.3]],
                       [[0.4,0.4,0.3,0.6,0.7],[0.5,0.6,0.5,0.7,0.8],[0.2,0.2,0.4,0.2,0.1],[0.4,0.4,0.5,0.3,0.2]],
                       [[0.6,0.7,0.4,0.4,0.6],[0.6,0.8,0.5,0.6,0.7],[0.2,0.1,0.3,0.1,0.2],[0.3,0.2,0.5,0.3,0.3]],
                       [[0.3,0.5,0.6,0.5,0.7],[0.5,0.7,0.8,0.6,0.8],[0.3,0.2,0.1,0.2,0.1],[0.4,0.3,0.2,0.3,0.2]],
                       [[0.3,0.2,0.3,0.3,0.4],[0.4,0.4,0.4,0.5,0.6],[0.4,0.3,0.3,0.4,0.2],[0.5,0.4,0.4,0.5,0.3]]])
print('+'*80)
print('区间直觉模糊决策矩阵F:\n',IIFD_matrix)
print('+'*80)
# S2.各属性的区间直觉模糊权重向量
IIFW_attr = np.array([0.35,0.2,0.2,0.1,0.15])
IIFW_IIFHA = np.array([0.112,0.236,0.304,0.236,0.112])
print('\n'+'+'*80)
print('各属性的区间直觉模糊权重向量:\n',IIFW_attr)
print('IIFHA相关权重向量:\n',IIFW_IIFHA)
print('+'*80)
# S3.计算加权区间直觉模糊决策矩阵F'
weighted_IIFD_matrix = calculate_weight_IIFHA_matrix(IIFD_matrix,IIFW_attr)
print('\n'+'+'*80)
print('加权区间直觉模糊决策矩阵F:\n',weighted_IIFD_matrix)
print('+'*80)

# S4.计算区间直觉模糊综合评价结果R
scores,index,ranked_IIFHA_matrix = calculate_IIFHA_scores_and_ranks(weighted_IIFD_matrix)
print('\n'+'+'*80)
print('区间直觉模糊矩阵得分值:\n',scores)
print('区间直觉模糊矩阵排序索引:\n',index+1)
print('区间直觉模糊矩阵排序结果:\n',ranked_IIFHA_matrix)
print('+'*80)

# S5.根据排序后的IIFHA矩阵计算各方案的综合评价结果
comprehensive_evaluation_matrix = calculate_IIFHA_comprehensive_evaluation_results(ranked_IIFHA_matrix,IIFW_IIFHA)
print('\n'+'+'*80)
print('综合评价结果:\n',comprehensive_evaluation_matrix)
print('+'*80)

# S6.根据综合评价结果区间直觉模糊矩阵计算各方案的得分值并排序
comprehensive_scores,comprehensive_index = calculate_IIFHA_comprehensive_scores_and_rank(comprehensive_evaluation_matrix)
print('\n'+'+'*80)
print('各方案的综合得分结果:\n',comprehensive_scores)
print('综合排序结果:\n',comprehensive_index+1)
print('+'*80)

  计算结果如下:

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
区间直觉模糊决策矩阵F:
[[[0.5 0.3 0.1 0.7 0.5]
[0.6 0.4 0.3 0.8 0.7]
[0.1 0.4 0.5 0.1 0.1]
[0.3 0.5 0.6 0.2 0.3]]
  
[[0.4 0.4 0.3 0.6 0.7]
[0.5 0.6 0.5 0.7 0.8]
[0.2 0.2 0.4 0.2 0.1]
[0.4 0.4 0.5 0.3 0.2]]
  
[[0.6 0.7 0.4 0.4 0.6]
[0.6 0.8 0.5 0.6 0.7]
[0.2 0.1 0.3 0.1 0.2]
[0.3 0.2 0.5 0.3 0.3]]
  
[[0.3 0.5 0.6 0.5 0.7]
[0.5 0.7 0.8 0.6 0.8]
[0.3 0.2 0.1 0.2 0.1]
[0.4 0.3 0.2 0.3 0.2]]
  
[[0.3 0.2 0.3 0.3 0.4]
[0.4 0.4 0.4 0.5 0.6]
[0.4 0.3 0.3 0.4 0.2]
[0.5 0.4 0.4 0.5 0.3]]]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
各属性的区间直觉模糊权重向量:
[0.35 0.2 0.2 0.1 0.15]
IIFHA相关权重向量:
[0.112 0.236 0.304 0.236 0.112]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
加权区间直觉模糊决策矩阵F:
[[[0.70269822 0.3 0.1 0.45227744 0.40539644]
[0.79881065 0.4 0.3 0.5527864 0.59463995]
[0.01778279 0.4 0.5 0.31622777 0.17782794]
[0.12160801 0.5 0.6 0.4472136 0.40536005]]
  
[[0.59096103 0.4 0.3 0.36754447 0.59463995]
[0.70269822 0.6 0.5 0.45227744 0.70093024]
[0.05981395 0.2 0.4 0.4472136 0.17782794]
[0.20118935 0.4 0.5 0.54772256 0.29906976]]
  
[[0.79881065 0.7 0.4 0.22540333 0.49702663]
[0.79881065 0.8 0.5 0.36754447 0.59463995]
[0.05981395 0.1 0.3 0.31622777 0.29906976]
[0.12160801 0.2 0.5 0.54772256 0.40536005]]
  
[[0.46430009 0.5 0.6 0.29289322 0.59463995]
[0.70269822 0.7 0.8 0.36754447 0.70093024]
[0.12160801 0.2 0.1 0.4472136 0.17782794]
[0.20118935 0.3 0.2 0.54772256 0.29906976]]
  
[[0.46430009 0.2 0.3 0.16333997 0.31826838]
[0.59096103 0.4 0.4 0.29289322 0.49702663]
[0.20118935 0.3 0.3 0.63245553 0.29906976]
[0.29730178 0.4 0.4 0.70710678 0.40536005]]]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
区间直觉模糊矩阵得分值:
[[ 6.81059032e-01 -1.00000000e-01 -3.50000000e-01 1.20811243e-01
2.08424204e-01]
[ 5.16327975e-01 2.00000000e-01 -5.00000000e-02 -8.75571213e-02
4.09336250e-01]
[ 7.08099669e-01 6.00000000e-01 5.00000000e-02 -1.35501262e-01
1.93618389e-01]
[ 4.22100476e-01 3.50000000e-01 5.50000000e-01 -1.67249233e-01
4.09336250e-01]
[ 2.78384997e-01 -5.00000000e-02 2.77555756e-17 -4.41664560e-01
5.54326028e-02]]
  
区间直觉模糊矩阵排序索引:
[[1 5 4 2 3]
[1 5 2 3 4]
[1 2 5 3 4]
[3 1 5 2 4]
[1 5 3 2 4]]
区间直觉模糊矩阵排序结果:
[[[0.70269822 0.40539644 0.45227744 0.3 0.1 ]
[0.79881065 0.59463995 0.5527864 0.4 0.3 ]
[0.01778279 0.17782794 0.31622777 0.4 0.5 ]
[0.12160801 0.40536005 0.4472136 0.5 0.6 ]]
  
[[0.59096103 0.59463995 0.4 0.3 0.36754447]
[0.70269822 0.70093024 0.6 0.5 0.45227744]
[0.05981395 0.17782794 0.2 0.4 0.4472136 ]
[0.20118935 0.29906976 0.4 0.5 0.54772256]]
  
[[0.79881065 0.7 0.49702663 0.4 0.22540333]
[0.79881065 0.8 0.59463995 0.5 0.36754447]
[0.05981395 0.1 0.29906976 0.3 0.31622777]
[0.12160801 0.2 0.40536005 0.5 0.54772256]]
  
[[0.6 0.46430009 0.59463995 0.5 0.29289322]
[0.8 0.70269822 0.70093024 0.7 0.36754447]
[0.1 0.12160801 0.17782794 0.2 0.4472136 ]
[0.2 0.20118935 0.29906976 0.3 0.54772256]]
  
[[0.46430009 0.31826838 0.3 0.2 0.16333997]
[0.59096103 0.49702663 0.4 0.4 0.29289322]
[0.20118935 0.29906976 0.3 0.3 0.63245553]
[0.29730178 0.40536005 0.4 0.4 0.70710678]]]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
综合评价结果:
[[0.41580674 0.45338118 0.56036302 0.51656388 0.28921784]
[0.54969636 0.6055587 0.64964948 0.68930033 0.43840109]
[0.2225209 0.21900742 0.19419468 0.17376081 0.31163549]
[0.40071228 0.37756177 0.32585036 0.27881773 0.41371693]]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
各方案的综合得分结果:
[0.17113497 0.23118534 0.34498373 0.37664284 0.00113325]
综合排序结果:
[4 3 2 1 5]
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值