【科研案例】加州大学伯克利分校大牛Pieter Abbeel团队又出大招,H1人形机器人可以这么研究?(文末附期刊论文)

本文介绍了PieterAbbeel领导的UCBerkeley团队在人形机器人研究中的突破,特别是他们的高维模拟机器人学习基准HumanoidBench。研究展示了强化学习在复杂任务中的局限,并提倡分层学习方法。HumanoidBench为解决仿人机器人复杂任务提供了挑战和平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pieter Abbeel standing next to BRETT, the Berkeley Robot for the Elimination of Tedious Tasks. (Photo by Adam Lau, Berkeley Engineering)

在正文开始前,小编想先分享一下这篇论文创作团队的背景情况。

足式机器人的派系

盘点足式机器人的几个山头,主要有两个派别,分别是偏控制领域的机器人派和用强化学习做具身智能的AI派

机器人派和AI派的划分主要还是源于人形机器人软件控制的迭代。人形机器人的控制算法主要分三代:第一代,用简单的基于模型的控制算法(LIPM+ZMP),代表机器人ASIMO;第二代,动态模型控制和最优控制算法(MPC+WBC),代表机器人Atalas;第三代,模拟+强化学习

这些算法各有优劣,我们这里不做过多技术上的探讨。但就从事研究的人来说,第一代和第二代基于模型控制的算法一般是控制、自动化或电子系的人在搞;第三代Sim+RL的算法,一般是计算机系AI方向的人在搞。小编今天分享论文的创作团队是属于偏向第三代这种基于AI来交叉Robotics的学者。

整个Robot Learning领域,或者说AI+Robotics,UC Berkeley可谓一手遮天。在知乎上看到一个说法:“其他学校的实力甚至相当程度取决于距离伯克利的地理距离…”,从CoRL接收论文作者的统计来看,还真是这样,排名第一UC Berekely,第二Stanford,第三UW。

创作团队的背景情况

UC Berkeley AI+Robotics这个领域最强是Pieter Abbeel派系,他是将深度强化学习应用在机器人方面的先驱人物,于2021年获得ACM 计算奖的荣誉。在获奖公告中,ACM 提到:「Pieter率先教会机器人从人类演示中学习(模仿学习)和通过自己的反复试错学习(强化学习),这为下一代机器人技术奠定了基础。

Pieter Abbeel现为加州大学伯克利分校计算机科学与电气工程教授,伯克利人工智能研究实验室(BAIR)的联合主任,伯克利机器人学习实验室(Berkeley Robot Learning Lab)主任,他最出名的是在机器人和机器学习方面的前沿研究,特别是在深度强化学习(deep reinforcement learning)方面。他于2000年获得比利时鲁汶大学电气工程学士和硕士学位,并在斯坦福大学获得计算机科学博士学位。Pieter Abbeel是AI大牛吴恩达的第一个博士生,这里值得一提的是吴恩达博士论文就是RL领域,但他后期的工作没有在RL这个领域继续,Pieter Abbeel作为吴恩达的第一个学生,延续了吴恩达在RL的传承,并成为当今RL+Robotics最强的一个派系。

Abbeel在AI+Robotics

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

京天机器人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值