图像分割-RSPrompter

前言

《RSPrompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model》,2024

本篇论文提出了目前SAM存在的一些问题:

  1. SAM严重依赖于人工先验(点、框、mask)且分割结果是没有标记类别的,如下图,单点、两点、边框提示的不同分割结果
  2. SAM在遥感图像分割任务中的性能在很大程度上仍未被探索和证明

1. 自动化提示器

针对问题1,不由得想到:如果能够自动生成多个与类别相关的提示,SAM 的解码器就能够产生带有类别标签的多个实例级掩码。

论文提出训练一个自动化的提示器(RSPrompter),能够处理来自测试集的任何图像,同时对对象进行定位,并推断它们的语义类别和实例掩码。最后通过RSPrompter+SAM,实现分割任务的自动化。

这个过程存在两个主要挑战:(i)类别相关的提示从哪里来?(ii)应选择哪种类型的提示作为掩膜解码器的输入

RSPrompter的结算流程如下:

  1. 通过冻结权重的SAM image encoder生成多个中间特征图 F i F_i Fi (K×h×w×c)和最终的图像嵌入 F i m g F_{img} Fimg (h×w×c)
  2. F i F_i Fi通过多尺度特征增强器(结构和原理见1.1)逐步处理获得多尺度特征 F m s F_{ms} Fms
  3. 将多尺度特征 F m s F_{ms} Fms输入RSPrompter(结构和原理见1.2)以获得多组提示语( F s p a r s e m ∈ R K p × c , m ∈ { 1 , ⋅ ⋅ ⋅ , N p } F^m_{sparse} ∈ R^{K_p×c}, m ∈ \{1, · · · , Np\} FsparsemRKp×c,m{ 1,⋅⋅⋅,Np})和它们的语义类别( c m ∈ R c , m ∈ { 1 , ⋅ ⋅ ⋅ , N p } c_m ∈ R^c, m ∈ \{1, · · · , Np\} cmRc,m{ 1,⋅⋅⋅,Np}),其中, K p K_p Kp定义了每次掩码生成的提示嵌入次数; N p N_p Np是提示的个数,用来定义输出实例掩码的个数。

需要注意的是, F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学海一叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值