线性代数 02.02 矩阵的运算

§ 

 

1、定义
2.m×nA=(a ij ),B=(b ij ),ABA+B, 
A+B=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ a 11 +b 11 a 21 +b 21 a m1 +b m1  a 12 +b 12 a 22 +b 22 a m2 +b m2   a 1n +b 1n a 2n +b 2n a mn +b mn  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟  

说明:①.矩阵必须同型;②.对应位置的元素相加.
矩阵的减法:A - B = A + (-B)

2.运算律
ABCm×n: 
1)A + B = B + A
2)(A + B) + C = A + (B + C)
3) A + (-A) = A - A = 0

 

1.定义
3.λ,λAAλ, 
λA=Aλ=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ λa 11 λa 21 λa m1  λa 12 λa 22 λa m2   λa 1n λa 2n λa mn  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟  

2.运算律
,ABm×n,λμ: 
1)(λμ)A=λ(μA) 
2)(λ+μ)A=λA+μA 
3)λ(A+B)=λA+λB 
,线. 

 

1.定义
4.A=(a ij ) m×s ,B=(b ij ) s×n ,ABm×nC=(c ij ) m×n c ij =a i1 b 1j +a i2 b 2j ++a is b sj = s k=1 a ik b kj (i=1,2,,m;j=1,2,,n),A×B=C. 

注意:
(a i1  a i2   a is  )×⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ b 1j b 2j b sj  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ =a i1 b 1j +a i2 b 2j ++a is b sj = s k=1 a ik b kj =c ij  

例1.求矩阵
A=(12 01 30 12 )B=⎛ ⎝ ⎜ ⎜ ⎜ 4121 1103 0314 ⎞ ⎠ ⎟ ⎟ ⎟ AB. 
:(numpynumpy.dot)C=AB=(12 01 30 12 )⎛ ⎝ ⎜ ⎜ ⎜ 4121 1103 0314 ⎞ ⎠ ⎟ ⎟ ⎟ =(99 29 111 ) 

例2.设矩阵
A=(21 42 )B=(23 46 )ABBA 
:AB=(21 42 )(23 46 )=(168 3216 )BA=(23 46 )(21 42 )=(00 00 ) 

2.运算律
1)矩阵的乘法一般不满足交换律
2)(AB)C = A(BC)
3)λ(AB)=A(λB)(λ) 
4)A(B+C)=AB+AC 
(B+C)A=BA+CA 

3.设E为单位矩阵
E m A m×n =A m×n , 
A m×n E n =A m×n  

4.方阵的幂运算
设A为n阶方阵,k,l为正整数
1)AAA=A k  
2)A k A l =A k+l  
3)(A k ) l =A kl  
(AB) k A k B k . 
如:
A×B=⎛ ⎝ ⎜ a 11 a 21 a 31  a 12 a 22 a 32  a 13 a 23 a 33  a 14 a 24 a 34  ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎜ ⎜ b 11 b 21 b 31 b 41  b 12 b 22 b 32 b 42  ⎞ ⎠ ⎟ ⎟ ⎟ =C=(c ij ) 3×2  
C i1 i,C i2 i.C. 

.线: 
   
   
   
a ij ={1ij线0ij线  
线 
A=⎛ ⎝ ⎜ ⎜ ⎜ 0101 1010 1001 1000 ⎞ ⎠ ⎟ ⎟ ⎟  
A 2 =⎛ ⎝ ⎜ ⎜ ⎜ 2010 1102 1101 0101 ⎞ ⎠ ⎟ ⎟ ⎟  
A 2 ij线. 

 

1.定义
5.A,A,A T  
例如
A=(14 25 36 )A T =⎛ ⎝ ⎜ 123 456 ⎞ ⎠ ⎟  

2.运算律
1)(A T ) T =A; 
2)(A+B) T =A T +B T ; 
3)(λA) T =λA T ; 
4)(AB) T =B T A T ; 
这里仅证明4)
A=(a ij ) m×s ,B=(b ij ) s×n . 
AB=C=(c ij ) m×n , 
B T A T =D=(d ij ) n×m  
c ji =a j1 b 1i +a j2 b 2i ++a js b si =b 1i a j1 +b 2i a j2 ++b si a js =d ij (i=1,2,,n;j=1,2,,m)D=C T ,B T A T =(AB) T . 

例3.已知
A=(21 03 12 )B=⎛ ⎝ ⎜ 142 720 131 ⎞ ⎠ ⎟ ,(AB) T . 
:AB=(21 03 12 )⎛ ⎝ ⎜ 142 720 131 ⎞ ⎠ ⎟ =(017 1413 310 )(AB) T =⎛ ⎝ ⎜ 0143 171310 ⎞ ⎠ ⎟  

A,A=A T ;A,A T =A 

4.n. 
:A=12 (A+A+A T A T )=12 (A+A T +AA T )=A+A T 2 +AA T 2 (A+A T 2 ) T =A T +(A T ) T 2 =A+A T 2 A+A T 2 .(AA T 2 ) T =A T (A T ) T 2 =AA T 2 AA T 2 .AA+A T 2 AA T 2 . 

5.X=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ x 1 x 2 x n  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ X T X=1,En,H=E2XX T ,:H,HH T =E. 

:H T =(E2XX T ) T =E T 2(XX T ) T =E2[(X T ) T ](X T )=E2XX T =HHEHH T =H 2 =(E2XX T ) 2 =E4XX T +4(XX T )(XX T )=E4XX T +4X(X T X)X T =E4XX T +4XX T =E 

 

1.定义
6.nA(),A,|A|detA. 

2.运算律
1).|A T |=|A|; 
2).|λA|=λ n |A|; 
3).|AB|=|A||B|;(AB) 

3),A=(a ij ),B=(b ij )2n 
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11  a n1 1  a 1n a nn 1 b 11 b n1  0 b 1n b nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ AE OB ∣ ∣ ∣  
,D=|A||B|,Db 1j 1,b 2j 2,,b nj n,n+j(j=1,2,,n), 
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a n1 1000 a 12 a 22 a n2 0100  a 1n a 2n a nn 0001 a 11 b 11 +a 12 b 21 ++a 1n b n1 a 21 b 11 +a 22 b 21 ++a 1n b n1 a n1 b 11 +a n2 b 21 ++a nn b n1  0 a 11 b 1n +a 12 b 2n ++a 1n b nn a 11 b 1n +a 12 b 2n ++a 1n b nn a n1 b 1n +a n2 b 2n ++a nn b nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ AE C0 ∣ ∣ ∣ C=(c ij ),c ij =a i1 b 1j +a i2 b 2j ++a in b nj ,C=ABDr j r n+j (j=1,2,,n),D=(1) n ∣ ∣ ∣ EA 0C ∣ ∣ ∣ ,E(1),D=(1) n (1) n ∣ ∣ ∣ EA 0C ∣ ∣ ∣ =∣ ∣ ∣ EA 0C ∣ ∣ ∣ D=|EC||0A|=|C|=|AB||AB|=|A||B| 

6.A,BnAA T =E,B T B=E,|A||B| =1,|A+B|=0. 
证:
B T B=E|B T B|=1|B T ||B|=1|B 2 |=1|A+B|=|AE+EB|=|AB T B+AA T B|=|A(B T +A T )B|=|A||(A+B) T ||B|=|B| 2 |A+B|=|A+B|2|A+B|=0|A+B|=0 

7.An,Bn,AB+BAn. 
:(AB+BA) T =(AB) T +(BA) T =B T A T +A T B T =BAAB=(AB+BA),AB+BAn. 

8.α=⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ ,β=⎛ ⎝ ⎜ ⎜ 112 13  ⎞ ⎠ ⎟ ⎟ ,A=αβ T ,A n |A n |. 

:A=⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ (1 12  13  )=⎛ ⎝ ⎜ ⎜ 123 12 132  13 23 1 ⎞ ⎠ ⎟ ⎟ β T α=(1 12  13  )⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ =3A n =(αβ T ) n =αβ T αβ T αβ T =3 n1 A|A n |=|3 n1 A|=(3 n1 ) n |A|=(3 n1 ) n ⎛ ⎝ ⎜ ⎜ 123 12 132  13 23 1 ⎞ ⎠ ⎟ ⎟ =0 

 

1.定义
7.A=(a ij ),a ¯  ij a ij ,A ¯ ¯ ¯  =(a ij  ¯ ¯ ¯ ¯  ). 

2.运算律
AB,λ.1)A+B ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  =A ¯ +B ¯ ;2)λA ¯ ¯ ¯ ¯ ¯  =λ ¯ A ¯ ;3)AB ¯ ¯ ¯ ¯ ¯  =A ¯ B ¯ . 

 

1.可换矩阵
设A、B均为方阵,若AB=BA, 则称是可换的.

9.A=(11 21 ),B=(a3 b2 ),AB,a,b. 
:AB=BA,(a+6a3 b+4b2 )=(a+b5 2ab4 )a=8,b=6 

10.A=⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ ,A 
:AX=⎛ ⎝ ⎜ x 1 y 1 z 1  x 2 y 2 z 2  x 3 y 3 z 3  ⎞ ⎠ ⎟  AX=XA⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ x 1 y 1 z 1  x 2 y 2 z 2  x 3 y 3 z 3  ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ x 1 y 1 z 1  x 2 y 2 z 2  x 3 y 3 z 3  ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ x 1 2y 1 3z 1  x 2 2y 2 3z 2  x 3 2y 3 3z 3  ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ x 1 y 1 z 1  2x 2 2y 2 2z 2  3x 3 3y 3 3z 3  ⎞ ⎠ ⎟ x 2 =2x 2 ,x 3 =3x 3 ,2y 1 =y 1 ,2y 3 =3y 3 ,3z 1 =z 1 ,3z 2 =2z 2 ,x 2 =x 3 =y 1 =y 3 =z 1 =z 2 =0,,A⎛ ⎝ ⎜ a00 0b0 00c ⎞ ⎠ ⎟ a,b,c. 

2.方阵的多项式
nAf(λ)=a m λ m +a m1 λ m1 ++a 1 λ+a 0 f(A)=a m A m +a m1 A m1 ++a 1 A+a 0 f(A)A. 

11.f(λ)=λ 2 3λ+2A=⎛ ⎝ ⎜ 101 112 211 ⎞ ⎠ ⎟ ,f(A). 
:A 2 =⎛ ⎝ ⎜ 101 112 211 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 101 112 211 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 312 213 521 ⎞ ⎠ ⎟ 3A=3⎛ ⎝ ⎜ 101 112 211 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 303 336 633 ⎞ ⎠ ⎟ f(A)=A 2 3A+2E=⎛ ⎝ ⎜ 312 213 521 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 303 336 633 ⎞ ⎠ ⎟ +⎛ ⎝ ⎜ 200 020 002 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 211 523 110 ⎞ ⎠ ⎟  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值