§第二章第二节矩阵的运算
一、矩阵的加法
1、定义
定义2.设有两个m×n矩阵A=(a ij ),B=(b ij ),那么矩阵A与B的和记作A+B,规定为
A+B=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ a 11 +b 11 a 21 +b 21 ⋮a m1 +b m1 a 12 +b 12 a 22 +b 22 ⋮a m2 +b m2 ⋯⋯⋯ a 1n +b 1n a 2n +b 2n ⋮a mn +b mn ⎞ ⎠ ⎟ ⎟ ⎟ ⎟
说明:①.矩阵必须同型;②.对应位置的元素相加.
矩阵的减法:A - B = A + (-B)
2.运算律
矩阵的加法满足下列运算律,设A、B、C都是m×n矩阵:
1)A + B = B + A
2)(A + B) + C = A + (B + C)
3) A + (-A) = A - A = 0
二、数与矩阵相乘
1.定义
定义3.数λ与矩阵的乘积,记作λA或Aλ,规定为
λA=Aλ=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ λa 11 λa 21 ⋮λa m1 λa 12 λa 22 ⋮λa m2 ⋯⋯⋯ λa 1n λa 2n ⋮λa mn ⎞ ⎠ ⎟ ⎟ ⎟ ⎟
2.运算律
数乘矩阵满足下列运算规律,设A、B为m×n矩阵,λ、μ为数:
1)(λμ)A=λ(μA)
2)(λ+μ)A=λA+μA
3)λ(A+B)=λA+λB
这样定义矩阵加法和数乘矩阵的运算,统称为矩阵的线性运算.
三、矩阵与矩阵相乘
1.定义
定义4.设A=(a ij ) m×s ,B=(b ij ) s×n 矩阵,那么规定矩阵A与矩阵B的乘积是一个m×n矩阵C=(c ij ) m×n 。其中c ij =a i1 b 1j +a i2 b 2j +⋯+a is b sj =∑ s k=1 a ik b kj (i=1,2,⋯,m;j=1,2,⋯,n),即A×B=C.
注意:
(a i1 a i2 ⋯ a is )×⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ b 1j b 2j ⋮b sj ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ =a i1 b 1j +a i2 b 2j +⋯+a is b sj =∑ s k=1 a ik b kj =c ij
例1.求矩阵
A=(12 01 30 −12 )与B=⎛ ⎝ ⎜ ⎜ ⎜ 4−121 1103 0314 ⎞ ⎠ ⎟ ⎟ ⎟ 的乘积AB.
解:(相当于numpy里面的numpy.dot函数)C=AB=(12 01 30 −12 )⎛ ⎝ ⎜ ⎜ ⎜ 4−121 1103 0314 ⎞ ⎠ ⎟ ⎟ ⎟ =(99 −29 −111 )
例2.设矩阵
A=(−21 4−2 )B=(2−3 4−6 )求AB与BA
解:AB=(−21 4−2 )(2−3 4−6 )=(−168 −3216 )BA=(2−3 4−6 )(−21 4−2 )=(00 00 )
2.运算律
1)矩阵的乘法一般不满足交换律
2)(AB)C = A(BC)
3)λ(AB)=A(λB)(其中λ为数)
4)A(B+C)=AB+AC
(B+C)A=BA+CA
3.设E为单位矩阵
E m A m×n =A m×n ,
A m×n E n =A m×n
4.方阵的幂运算
设A为n阶方阵,k,l为正整数
1)AA⋯A=A k
2)A k ⋅A l =A k+l
3)(A k ) l =A kl
注:一般说来(AB) k ≠A k B k .
如:
A×B=⎛ ⎝ ⎜ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 a 14 a 24 a 34 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎜ ⎜ b 11 b 21 b 31 b 41 b 12 b 22 b 32 b 42 ⎞ ⎠ ⎟ ⎟ ⎟ =C=(c ij ) 3×2
其中C i1 是向第i店所发产品的总值,C i2 是向第i店所发产品的总重量.C表示为向三个商店所发产品的总值及总重量所构成的矩阵.
又如.四个城市间的单向航线如下图所示:
① ↔ ②
↕ ↘ ↓
③ ← ④
若令a ij ={1从i市到j市有一条单向航线0从i市到j市没有单向航线
则图中的航线用矩阵表示为
A=⎛ ⎝ ⎜ ⎜ ⎜ 0101 1010 1001 1000 ⎞ ⎠ ⎟ ⎟ ⎟
A 2 =⎛ ⎝ ⎜ ⎜ ⎜ 2010 1102 1101 0101 ⎞ ⎠ ⎟ ⎟ ⎟
则A 2 表示从i市经过一次中转到j市的单向航线的条数构成的矩阵.
四、矩阵的转置
1.定义
定义5.把矩阵A的行换成同序数的列得到的矩阵,叫做A的转置矩阵,记作A T 。
例如
A=(14 25 36 )A T =⎛ ⎝ ⎜ 123 456 ⎞ ⎠ ⎟
2.运算律
1)(A T ) T =A;
2)(A+B) T =A T +B T ;
3)(λA) T =λA T ;
4)(AB) T =B T A T ;
这里仅证明4)
设A=(a ij ) m×s ,B=(b ij ) s×n .
AB=C=(c ij ) m×n ,
B T A T =D=(d ij ) n×m
因为c ji =a j1 b 1i +a j2 b 2i +⋯+a js b si =b 1i a j1 +b 2i a j2 +⋯+b si a js =d ij (i=1,2,⋯,n;j=1,2,⋯,m)即D=C T ,也就是B T A T =(AB) T .
例3.已知
A=(21 03 −12 )B=⎛ ⎝ ⎜ 142 720 −131 ⎞ ⎠ ⎟ ,求(AB) T .
解:AB=(21 03 −12 )⎛ ⎝ ⎜ 142 720 −131 ⎞ ⎠ ⎟ =(017 1413 −310 )所以(AB) T =⎛ ⎝ ⎜ 014−3 171310 ⎞ ⎠ ⎟
有了转置矩阵的定义后,显然有A为对称矩阵,则A=A T ;A为反对称矩阵,则A T =−A
例4.试证任意n阶方阵都可以分解为一个对称矩阵和一个反对称矩阵之和.
证:A=12 (A+A+A T −A T )=12 (A+A T +A−A T )=A+A T 2 +A−A T 2 ∵(A+A T 2 ) T =A T +(A T ) T 2 =A+A T 2 ∴A+A T 2 是对称矩阵.∵(A−A T 2 ) T =A T −(A T ) T 2 =−A−A T 2 ∴A−A T 2 是反对称矩阵.故A等于对称矩阵A+A T 2 与反对称矩阵A−A T 2 之和.
例5.设列矩阵X=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ x 1 x 2 ⋮x n ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ 满足X T X=1,E为n阶的单位矩阵,H=E−2XX T ,证明:H是对称矩阵,且HH T =E.
证明:H T =(E−2XX T ) T =E T −2(XX T ) T =E−2[(X T ) T ](X T )=E−2XX T =H∴H是对称矩阵因为E是对角矩阵,满足交换律HH T =H 2 =(E−2XX T ) 2 =E−4XX T +4(XX T )(XX T )=E−4XX T +4X(X T X)X T =E−4XX T +4XX T =E
五、方阵的行列式
1.定义
定义6.由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作|A|或detA.
2.运算律
1).|A T |=|A|;
2).|λA|=λ n |A|;
3).|AB|=|A||B|;(A、B必须都是方阵)
证明3),设A=(a ij ),B=(b ij )。记2n阶行列式
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 ⋮ a n1 −1 ⋯⋯⋱ a 1n ⋮a nn −1 b 11 ⋮b n1 0⋯⋯ b 1n ⋮b nn ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ A−E OB ∣ ∣ ∣
显然,D=|A||B|,而在D中以b 1j 乘第1列,b 2j 乘第2列,⋯,b nj 乘第n列,都加到第n+j列上(j=1,2,⋯,n),有
D=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 ⋯a n1 −1000 a 12 a 22 ⋯a n2 0−100 ⋯⋯⋯⋯⋯⋯⋯⋯ a 1n a 2n ⋯a nn 000−1 a 11 b 11 +a 12 b 21 +⋯+a 1n b n1 a 21 b 11 +a 22 b 21 +⋯+a 1n b n1 ⋯a n1 b 11 +a n2 b 21 +⋯+a nn b n1 ⋯⋯⋯⋯0 a 11 b 1n +a 12 b 2n +⋯+a 1n b nn a 11 b 1n +a 12 b 2n +⋯+a 1n b nn ⋯a n1 b 1n +a n2 b 2n +⋯+a nn b nn ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ A−E C0 ∣ ∣ ∣ 其中C=(c ij ),c ij =a i1 b 1j +a i2 b 2j +⋯+a in b nj ,故C=AB。再对D的行作r j ↔r n+j (j=1,2,⋯,n),有D=(−1) n ∣ ∣ ∣ −EA 0C ∣ ∣ ∣ ,再把−E的每行提出一个(−1)公因子,D=(−1) n (−1) n ∣ ∣ ∣ EA 0C ∣ ∣ ∣ =∣ ∣ ∣ EA 0C ∣ ∣ ∣ D=|EC|−|0A|=|C|=|AB|于是|AB|=|A||B|
例6.设A,B均为n阶方阵且AA T =E,B T B=E,|A||B| =−1,则|A+B|=0.
证:
B T B=E→|B T B|=1→|B T ||B|=1→|B 2 |=1|A+B|=|AE+EB|=|AB T B+AA T B|=|A(B T +A T )B|=|A||(A+B) T ||B|=−|B| 2 |A+B|=−|A+B|2|A+B|=0|A+B|=0
例7.设A是n阶反对称矩阵,B是n阶对称矩阵,则AB+BA是n阶反对称矩阵.
证:(AB+BA) T =(AB) T +(BA) T =B T A T +A T B T =−BA−AB=−(AB+BA)所以,AB+BA为n阶反对称矩阵.
例8.设α=⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ ,β=⎛ ⎝ ⎜ ⎜ 112 13 ⎞ ⎠ ⎟ ⎟ ,令A=αβ T ,求A n 及|A n |.
解:A=⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ (1 12 13 )=⎛ ⎝ ⎜ ⎜ 123 12 132 13 23 1 ⎞ ⎠ ⎟ ⎟ β T α=(1 12 13 )⎛ ⎝ ⎜ 123 ⎞ ⎠ ⎟ =3A n =(αβ T ) n =αβ T αβ T ⋯αβ T =3 n−1 A|A n |=|3 n−1 A|=(3 n−1 ) n |A|=(3 n−1 ) n ⎛ ⎝ ⎜ ⎜ 123 12 132 13 23 1 ⎞ ⎠ ⎟ ⎟ =0
六、共轭矩阵
1.定义
定义7.设A=(a ij )为复矩阵,a ¯ ij 表示a ij 的共轭复数,记A ¯ ¯ ¯ =(a ij ¯ ¯ ¯ ¯ ).
2.运算律
设A、B为复矩阵,λ为负数.1)A+B ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ =A ¯ +B ¯ ;2)λA ¯ ¯ ¯ ¯ ¯ =λ ¯ A ¯ ;3)AB ¯ ¯ ¯ ¯ ¯ =A ¯ B ¯ .
七、可换矩阵及方阵多项式
1.可换矩阵
设A、B均为方阵,若AB=BA, 则称是可换的.
例9.设A=(11 2−1 ),B=(a3 b2 ),若矩阵A与B可换,求a,b的值.
解:由于AB=BA,即(a+6a−3 b+4b−2 )=(a+b5 2a−b4 )a=8,b=6
例10.设A=⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ ,求与A可交换的所有矩阵
解:设与A可交换的矩阵为X=⎛ ⎝ ⎜ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ⎞ ⎠ ⎟ 由AX=XA得⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 100 020 003 ⎞ ⎠ ⎟ 于是⎛ ⎝ ⎜ x 1 2y 1 3z 1 x 2 2y 2 3z 2 x 3 2y 3 3z 3 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ x 1 y 1 z 1 2x 2 2y 2 2z 2 3x 3 3y 3 3z 3 ⎞ ⎠ ⎟ 从而x 2 =2x 2 ,x 3 =3x 3 ,2y 1 =y 1 ,2y 3 =3y 3 ,3z 1 =z 1 ,3z 2 =2z 2 ,即x 2 =x 3 =y 1 =y 3 =z 1 =z 2 =0,所以,与A可交换的任一矩阵是⎛ ⎝ ⎜ a00 0b0 00c ⎞ ⎠ ⎟ 其中a,b,c为任意实数.
2.方阵的多项式
设有n阶矩阵A和多项式f(λ)=a m λ m +a m−1 λ m−1 +⋯+a 1 λ+a 0 规定f(A)=a m A m +a m−1 A m−1 +⋯+a 1 A+a 0 称f(A)为方阵A的矩阵多项式.
例11.设有多项式f(λ)=λ 2 −3λ+2和矩阵A=⎛ ⎝ ⎜ 101 −112 2−11 ⎞ ⎠ ⎟ ,求f(A).
解:因为A 2 =⎛ ⎝ ⎜ 101 −112 2−11 ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ 101 −112 2−11 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 3−12 2−13 5−21 ⎞ ⎠ ⎟ 3A=3⎛ ⎝ ⎜ 101 −112 2−11 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 303 −336 6−33 ⎞ ⎠ ⎟ 则f(A)=A 2 −3A+2E=⎛ ⎝ ⎜ 3−12 2−13 5−21 ⎞ ⎠ ⎟ −⎛ ⎝ ⎜ 303 −336 6−33 ⎞ ⎠ ⎟ +⎛ ⎝ ⎜ 200 020 002 ⎞ ⎠ ⎟ =⎛ ⎝ ⎜ 2−1−1 5−2−3 −110 ⎞ ⎠ ⎟