【数理方程】分离变量法

2分离变量法

2.0常微分方程

2.0.1齐次&非齐次方程

  • 齐次方程 y ′ ( x ) = P ( x ) y ( x ) y'(x)=P(x)y(x) y(x)=P(x)y(x) 分离变量,两边积分
    • y ( x ) = C e ∫ P ( x ) d x y(x)=Ce^{\int P(x)dx} y(x)=CeP(x)dx
    • P(x)为常数 y ′ ( x ) = m y ( x ) → y ( x ) = C e m x y'(x)=my(x)\rightarrow y(x)=Ce^{mx} y(x)=my(x)y(x)=Cemx
  • 非齐次方程 y ′ ( x ) = P ( x ) y ( x ) + Q ( x ) y'(x)=P(x)y(x)+Q(x) y(x)=P(x)y(x)+Q(x) 常数变异法
    • y ( x ) = e ∫ P ( x ) d x ( ∫ Q ( x ) ⋅ e − ∫ P ( x ) d x d x + C ) y(x)=e^{\int P(x)dx}(\int Q(x)\cdot e^{-\int P(x)dx}dx+C) y(x)=eP(x)dx(Q(x)eP(x)dxdx+C)

2.0.2二阶常系数齐次常微分方程

a 2 y ′ ′ ( x ) + a 1 y ′ ( x ) + a 0 y ( x ) = 0 a_2y''(x)+a_1y'(x)+a_0y(x)=0 a2y′′(x)+a1y(x)+a0y(x)=0

  • 特征方程: a 2 r 2 + a 1 r + a 0 = 0 a_2r^2+a_1r+a_0=0 a2r2+a1r+a0=0, r特征根

  • 2实根 r 1 ≠ r 2 r_1\neq r_2 r1=r2: 通解 y ( x ) = A e r 1 x + B e r 2 x y(x)=Ae^{r_1x}+Be^{r_2x} y(x)=Aer1x+Ber2x

  • 1实根 r 1 = r 2 r_1=r_2 r1=r2: 通解 y ( x ) = ( A x + B ) e r x y(x)=(Ax+B)e^{rx} y(x)=(Ax+B)erx

  • 复根 r 1 = α + β i , r 2 = α − β i r_1=\alpha+\beta i, r_2=\alpha-\beta i r1=α+βi,r2=αβi: 通解 y ( x ) = e α x ( A cos ⁡ β x + B sin ⁡ β x ) y(x)=e^{\alpha x}(A\cos\beta x+B\sin\beta x) y(x)=eαx(Acosβx+Bsinβx)
    在这里插入图片描述

  • ρ 2 R ′ ′ ( ρ ) + ρ R ′ ( ρ ) − λ R ( ρ ) = 0 \rho^2R''(\rho)+\rho R'(\rho)-\lambda R(\rho)=0 ρ2R′′(ρ)+ρR(ρ)λR(ρ)=0

    • ρ = e x \rho=e^x ρ=ex

2.1特征值问题

2.1.1常用特征值问题

  • 常微分方程 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0 X′′(x)+λX(x)=0

    • λ < 0 \lambda<0 λ<0, X ( x ) = A e − λ x + B e − − λ x X(x)=Ae^{\sqrt{-\lambda}x}+Be^{-\sqrt{-\lambda}x} X(x)=Aeλ x+Beλ x
    • λ = 0 \lambda=0 λ=0, X ( x ) = A x + B X(x)=Ax+B X(x)=Ax+B
    • λ > 0 \lambda>0 λ>0, X ( x ) = A cos ⁡ λ x + B sin ⁡ λ x X(x)=A\cos\sqrt{\lambda}x+B\sin\sqrt{\lambda}x X(x)=Acosλ x+Bsinλ x
  • 含待确定常数 λ \lambda λ的特征值问题, λ \lambda λ特征值, X ( x ) X(x) X(x)特征函数

  • { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 , X ( l ) = 0 \left\{\begin{matrix}X''(x)+\lambda X(x)=0 \\X(0)=0, X(l)=0\end{matrix}\right. {X′′(x)+λX(x)=0X(0)=0,X(l)=0

    1. λ < 0 \lambda<0 λ<0, A=B=0, 平凡解
    2. λ = 0 \lambda=0 λ=0, A=B=0, 平凡解
    3. λ > 0 \lambda>0 λ>0, { λ n = ( n π l ) 2 X n ( x ) = B n sin ⁡ n π l x , n = 1 , 2 , 3... \left\{\begin{matrix}\lambda _n=(\frac{n\pi}{l} )^2 \\ X_n(x)=B_n\sin\frac{n\pi}{l}x,n=1,2,3... \end{matrix}\right. {λn=(l)2Xn(x)=Bnsinlx,n=1,2,3...
      1. sin ⁡ n π l x n = 1 ∞ {\sin\frac{n\pi}{l}x}_{n=1}^\infty sinlxn=1
      2. C n = 2 l ∫ 0 l f ( x ) sin ⁡ n π l x d x C_n=\frac{2}{l}\int_0^l f(x)\sin\frac{n\pi}{l}xdx Cn=l20lf(x)sinlxdx

2.1.2关于特征值问题的理论

  • S-L方程 d d x ( k ( x ) d y d x ) − q ( x ) y ( x ) + λ ρ ( x ) y ( x ) = 0 , x ∈ ( a , b ) \frac{d}{dx}(k(x)\frac{dy}{dx})-q(x)y(x)+\lambda\rho(x)y(x)=0,x\in(a,b) dxd(k(x)dxdy)q(x)y(x)+λρ(x)y(x)=0,x(a,b)
    • 特征值:其次边界条件,周期性,自然边界条件
    • k ( x ) = ρ ( x ) = 1 , q ( x ) = 0 k(x)=\rho(x)=1,q(x)=0 k(x)=ρ(x)=1,q(x)=0: y ′ ′ ( x ) + λ y ( x ) = 0 y''(x)+\lambda y(x)=0 y′′(x)+λy(x)=0
    • k ( x ) = ρ ( x ) = x , q ( x ) = n 2 x k(x)=\rho(x)=x,q(x)=\frac{n^2}{x} k(x)=ρ(x)=x,q(x)=xn2: x 2 y ′ ′ ( x ) + x y ′ ( x ) + ( λ x 2 − n 2 ) y ( x ) = 0 x^2y''(x)+xy'(x)+(\lambda x^2-n^2)y(x)=0 x2y′′(x)+xy(x)+(λx2n2)y(x)=0
    • k ( x ) = 1 − x 2 , ρ ( x ) = 1 , q ( x ) = 0 k(x)=1-x^2,\rho(x)=1,q(x)=0 k(x)=1x2,ρ(x)=1,q(x)=0: ( 1 − x ) 2 y ′ ′ ( x ) − 2 x y ′ ( x ) + λ y ( x ) = 0 (1-x)^2y''(x)-2xy'(x)+\lambda y(x)=0 (1x)2y′′(x)2xy(x)+λy(x)=0
    1. 存在可数个实特征值->单调递增序列 0 ≤ λ 1 ≤ λ 2 ≤ . . . ≤ λ n ≤ {0\leq\lambda_1\leq\lambda_2\leq...\leq\lambda_n\leq} 0λ1λ2...λn
      可数个特征函数 { y x ( x ) } , n = 1 , 2 , 3... \{y_x(x)\}, n=1,2,3... {yx(x)},n=1,2,3...
    2. 所有特征值非负 λ n ≥ 0 , n = 1 , 2 , 3... \lambda_n\geq 0, n=1,2,3... λn0,n=1,2,3...
    3. 特征函数系 { y n ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty} {yn(x)}n=1n= L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]上关于权函数 ρ ( x ) \rho(x) ρ(x)的正交系 ∫ a b ρ ( x ) y n ( x ) y m ( x ) d x = { 0 n ≠ m ∣ ∣ y n ∣ ∣ 2 2 n = m \int_a^b\rho(x)y_n(x)y_m(x)dx=\left\{\begin{matrix}0 &n\neq m \\||y_n||_2^2 &n=m\end{matrix}\right. abρ(x)yn(x)ym(x)dx={0∣∣yn22n=mn=m
    4. 特征函数系 { y n ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty} {yn(x)}n=1n= L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]上关于权函数 ρ ( x ) \rho(x) ρ(x)的完备系

2.1.3Matlab

  • 二阶常微分方程
    d 2 y d x 2 + y = 1 − x 2 π \frac{d^{2} y}{d x^{2}}+y=1-\frac{x^{2}}{\pi} dx2d2y+y=1πx2通解
    • y=dsolve('D2y+y=1-x^2/pi','x')
      
    { d 2 y d x 2 + y = 1 − x 2 π y ( 0 ) = 0.2 , y ′ ( 0 ) = 0.5 \left\{\begin{array}{l}\frac{d^{2} y}{d x^{2}}+y=1-\frac{x^{2}}{\pi} \\y(0)=0.2, y^{\prime}(0)=0.5\end{array}\right. {dx2d2y+y=1πx2y(0)=0.2,y(0)=0.5特解,作图
    • y=dsolve('D2y+y=1-x^2/pi','y(0)=0.2,Dy(0)=0.5','x')
      ezplot(y),aixs([-3 3 -0.5 2])
      
  • 常微分方程组 { d u d t = 3 u − 2 v d v d t + v = 2 u \left\{\begin{array}{l}\frac{d u}{d t}=3 u-2 v \\\frac{d v}{d t}+v=2 u\end{array}\right. {dtdu=3u2vdtdv+v=2u
    1.求通解
    • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u')
      
    2.求满足初始条件 u ( 0 ) = 1 , v ( 0 ) = 0 u(0)=1,v(0)=0 u(0)=1,v(0)=0的特解
    • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u','u(0)=1,v(0)=0','t')
      

2.2一维波方程,一维热方程解法

2.2.1一维波方程

{ ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) \left\{\begin{array}{l} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}} \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\ \left.\boldsymbol{u}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{u}\right|_{\boldsymbol{x}=l}=0 \\ \left.\boldsymbol{u}\right|_{t=0}=\phi(\boldsymbol{x}),\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}\right|_{t=0}=\psi(\boldsymbol{x}) \end{array}\right. t22u=a2x22u0<x<l,t>0ux=0=ux=l=0ut=0=ϕ(x),tu t=0=ψ(x)
在这里插入图片描述

  • u n ( x , t ) u_n(x,t) un(x,t)在任意时刻为正弦曲线
    • t = t 0 t=t_0 t=t0 u n ( x , t 0 ) u_n(x,t_0) un(x,t0)为正弦曲线,振幅随时间变化
    • x = x 0 x=x_0 x=x0 u n ( x 0 , t ) u_n(x_0,t) un(x0,t)简谐振动
  • 任意确定时刻 u n ( x , t ) = A n ′ sin ⁡ n π l x u_{n}(x, t)=A_{n}^{\prime} \sin \frac{n \pi}{l} x un(x,t)=Ansinlx
    • n + 1 n+1 n+1个零点, n n n个极值点, u 1 , u 2 , u 3 u_1,u_2,u_3 u1,u2,u3是一系列驻波

2.2.2一维热方程解法

在这里插入图片描述

2.3Laplace方程定解问题解法

2.3.1直角坐标系下Laplace

在这里插入图片描述

2.3.2二维圆域Laplace定解问题解法

  1. 定解问题 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{y}^{2}}=0 x22u+y22u=0
  2. 极坐标变换 { x = ρ cos ⁡ θ y = ρ sin ⁡ θ , 0 ≤ θ ≤ 2 π \left\{\begin{array}{l}x=\rho \cos \theta \\y=\rho \sin \theta,\end{array} \quad 0 \leq \theta \leq 2 \pi\right. {x=ρcosθy=ρsinθ,0θ2π
  3. ∂ u ∂ x = ∂ u ∂ ρ ∂ ρ ∂ x + ∂ u ∂ θ ∂ θ ∂ x = v \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{u}}{\partial \rho} \frac{\partial \rho}{\partial \boldsymbol{x}}+\frac{\partial \boldsymbol{u}}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{x}}=\boldsymbol{v} xu=ρuxρ+θuxθ=v代入得 $ \begin{array}{l}\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \boldsymbol{u}}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \boldsymbol{u}}{\partial \theta^{2}}=0 \\frac{\partial^{2} \boldsymbol{u}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \boldsymbol{u}}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \boldsymbol{u}}{\partial \theta^{2}}=0\end{array} $

2.4非齐次方程

波方程 { ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 + f ( x , t ) , 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = Ψ ( x ) \left\{\begin{array}{l}\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t}), \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\\left.\boldsymbol{u}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{u}\right|_{\boldsymbol{x}=l}=0 \\\left.\boldsymbol{u}\right|_{t=0}=\phi(\boldsymbol{x}),\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}\right|_{t=0}=\varPsi(\boldsymbol{x})\end{array}\right. t22u=a2x22u+f(x,t),0<x<l,t>0ux=0=ux=l=0ut=0=ϕ(x),tu t=0=Ψ(x)
拆解 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

2.4.1特征函数法

波方程

{ ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f ( x , t ) v ∣ x = 0 = v ∣ x = l = 0 v ∣ t = 0 = 0 , ∂ v ∂ t ∣ t = 0 = 0 \left\{\begin{array}{l}\frac{\partial^{2} v}{\partial t^{2}}=a^{2} \frac{\partial^{2} v}{\partial x^{2}}+f(x, t) \\\left.v\right|_{x=0}=\left.v\right|_{x=l}=0 \\\left.v\right|_{t=0}=0,\left.\frac{\partial v}{\partial t}\right|_{t=0}=0\end{array}\right. t22v=a2x22v+f(x,t)vx=0=vx=l=0vt=0=0,tv t=0=0

  1. 齐次方程+齐次边界条件 { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 v ∣ x = 0 = v ∣ x = l = 0 \left\{\begin{array}{l}\frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{x}^{2}} \\\left.\boldsymbol{v}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{v}\right|_{\boldsymbol{x}=l}=0\end{array}\right. {t22v=a2x22vvx=0=vx=l=0
    1. 特征值问题 { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 \left\{\begin{array}{l}\boldsymbol{X}^{\prime \prime}(\boldsymbol{x})+\lambda \boldsymbol{X}(\boldsymbol{x})=0 \\\boldsymbol{X}(0)=\boldsymbol{X}(\boldsymbol{l})=0\end{array}\right. {X′′(x)+λX(x)=0X(0)=X(l)=0
      1. 特征函数 X n ( x ) = B n sin ⁡ n π l x , n = 1 , 2 , . . . X_n(x)=B_n\sin\frac{n\pi}{l}x,n=1,2,... Xn(x)=Bnsinlx,n=1,2,...
      2. 假设非齐次方程解 v ( x , t ) = ∑ n = 1 ∞ v n ( t ) sin ⁡ n π l x v(x,t)=\sum_{n=1}^{\infty}v_n(t)\sin \frac{n\pi}{l}x v(x,t)=n=1vn(t)sinlx
  2. f ( x , t ) f(x,t) f(x,t)按特征函数序列 { sin ⁡ n π l x } n = 1 ∞ \{\sin\frac{n\pi}{l}x\}_{n=1}^{\infty} {sinlx}n=1展开为级数形式
    1. f ( x , t ) = ∑ n = 1 ∞ f n ( t ) sin ⁡ n π l x f(x,t)=\sum_{n=1}^{\infty}f_n(t)\sin\frac{n\pi}{l}x f(x,t)=n=1fn(t)sinlx
    2. f n ( t ) = 2 l ∫ 0 l f ( x , t ) sin ⁡ n π l x d x f_n(t)=\frac{2}{l}\int_0^lf(x,t)\sin\frac{n\pi}{l}xdx fn(t)=l20lf(x,t)sinlxdx
  3. 以上结果带入非齐次方程
    1. 在这里插入图片描述
    2. 得常微分方程问题 { v n ′ ′ ( t ) + ( n π a l ) 2 v n ( t ) = f n ( t ) v n ( 0 ) = 0 , v n ′ ( 0 ) = 0 \left\{\begin{array}{l}v_{n}^{\prime \prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} v_{n}(t)=f_{n}(t) \\v_{n}(0)=0, \quad v_{n}^{\prime}(0)=0\end{array}\right. {vn′′(t)+(lnπa)2vn(t)=fn(t)vn(0)=0,vn(0)=0
    3. Laplace变换
      1. v n ( t ) = l n π a ∫ 0 t f n ( τ ) sin ⁡ n π a ( t − τ ) l d τ \boldsymbol{v}_{n}(t)=\frac{l}{n \pi a} \int_{0}^{t} f_{n}(\tau) \sin \frac{n \pi a(t-\tau)}{l} d \tau vn(t)=nπal0tfn(τ)sinlnπa(tτ)dτ
      2. v ( x , t ) = ∑ n = 1 ∞ l n π a ∫ 0 t f n ( τ ) sin ⁡ n π a ( t − τ ) l d τ sin ⁡ n π l x \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})=\sum_{n=1}^{\infty} \frac{l}{\boldsymbol{n} \pi a} \int_{0}^{t} f_{n}(\tau) \sin \frac{n \pi a(t-\tau)}{l} d \tau \sin \frac{n \pi}{l} \boldsymbol{x} v(x,t)=n=1nπal0tfn(τ)sinlnπa(tτ)dτsinlx
        Matlab解二阶常微分方程
syms V n a L 
S=dsolve(`D2V+(n*pi*a/L)^2*V=5`,`V(0)=0,DV(0)=0`,`t`)
pretty(simple(S))
热方程

{ ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 + sin ⁡ ω t 0 < x < l , t > 0 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 u ∣ t = 0 = 0 \left\{\begin{array}{l} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\sin \omega \boldsymbol{t} \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\ \left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=0}=\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=l}=0 \\ \left.\boldsymbol{u}\right|_{t=0}=0 \end{array}\right. tu=a2x22u+sinωt0<x<l,t>0xu x=0=xu x=l=0ut=0=0

  1. 齐次方程+齐次边界条件 { ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 \left\{\begin{array}{l}\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}} \\\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=0}=\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=l}=0\end{array}\right. {tu=a2x22uxu x=0=xu x=l=0
    1. 得特征值问题 { X ′ ′ ( x ) + λ X ( x ) = 0 X ′ ( 0 ) = X ′ ( l ) = 0 \left\{\begin{array}{l}\boldsymbol{X}^{\prime \prime}(\boldsymbol{x})+\lambda \boldsymbol{X}(\boldsymbol{x})=0 \\\boldsymbol{X}^{\prime}(0)=\boldsymbol{X}^{\prime}(\boldsymbol{l})=0\end{array}\right. {X′′(x)+λX(x)=0X(0)=X(l)=0
    2. 特征函数 X n ( x ) = A n cos ⁡ n π l x , n = 0 , 1 , 2 , . . . X_n(x)=A_n\cos\frac{n\pi}{l}x,n=0,1,2,... Xn(x)=Ancoslx,n=0,1,2,...
    3. 设非齐次方程解 u ( x , t ) = ∑ n = 1 ∞ u n ( t ) cos ⁡ n π l x u(x,t)=\sum_{n=1}^\infty u_n(t)\cos\frac{n\pi}{l}x u(x,t)=n=1un(t)coslx
  2. sin ⁡ w t \sin wt sinwt按特征函数序列 { cos ⁡ n π l x } n = 0 ∞ \{\cos\frac{n\pi}{l}x\}_{n=0}^\infty {coslx}n=0展开为级数形式
    1. sin ⁡ w t = f 0 + ∑ n = 1 ∞ f n ( t ) cos ⁡ n π l x \sin wt=f_0+\sum_{n=1}^\infty f_n(t)\cos\frac{n\pi}{l}x sinwt=f0+n=1fn(t)coslx
      1. f 0 ( t ) = 1 l ∫ 0 l sin ⁡ w t d x = sin ⁡ w t f_0(t)=\frac{1}{l}\int_0^l\sin wtdx=\sin wt f0(t)=l10lsinwtdx=sinwt
      2. f n ( t ) = 2 l ∫ 0 l sin ⁡ w t cos ⁡ n π l x d x = 0 f_n(t)=\frac{2}{l}\int_0^l\sin wt\cos\frac{n\pi}{l}xdx=0 fn(t)=l20lsinwtcoslxdx=0
  3. 代入非齐次方程得
    1. 在这里插入图片描述
    2. 得常微分方程问题 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = f n ( t ) u n ( 0 ) = 0 \left\{\begin{array}{l}u_{n}^{\prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} u_{n}(t)=f_{n}(t) \\u_{n}(0)=0\end{array}\right. {un(t)+(lnπa)2un(t)=fn(t)un(0)=0
      1. n = 0 n=0 n=0 { u 0 ′ ( t ) = sin ⁡ w t u 0 ( 0 ) = 0 \left\{\begin{array}{l}\boldsymbol{u}_{0}^{\prime}(\boldsymbol{t})=\sin \boldsymbol{w} \boldsymbol{t} \\\boldsymbol{u}_{0}(0)=0\end{array}\right. {u0(t)=sinwtu0(0)=0
        1. u 0 ( t ) = − 1 w cos ⁡ w t + C u 0 ( 0 ) = 0 } ⇒ u 0 ( t ) = 1 w ( 1 − cos ⁡ w t ) \left.\begin{array}{c}u_{0}(t)=-\frac{1}{w} \cos w t+C \\u_{0}(0)=0\end{array}\right\} \Rightarrow u_{0}(t)=\frac{1}{w}(1-\cos w t) u0(t)=w1coswt+Cu0(0)=0}u0(t)=w1(1coswt)
      2. n ≠ 0 n\neq 0 n=0 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = 0 u n ( 0 ) = 0 \left\{\begin{array}{l}u_{n}^{\prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} u_{n}(t)=0 \\u_{n}(0)=0\end{array}\right. {un(t)+(lnπa)2un(t)=0un(0)=0
        1. u n ( t ) = C e − a 2 n 2 π 2 l 2 t u n ( 0 ) = 0 } ⇒ u n ( t ) ≡ 0 \left.\begin{array}{l}u_{n}(t)=C e^{-a^{2} \frac{n^{2} \pi^{2}}{l^{2}} t} \\u_{n}(0)=0\end{array}\right\} \Rightarrow u_{n}(t) \equiv 0 un(t)=Cea2l2n2π2tun(0)=0}un(t)0
    3. u ( x , t ) = ∑ n = 0 ∞ u n ( t ) cos ⁡ n π l x u(x,t)=\sum_{n=0}^\infty u_n(t)\cos\frac{n\pi}{l}x u(x,t)=n=0un(t)coslx

2.5非齐次边界条件处理

2.4波方程 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

  1. v在边界满足 v ( o , t ) = 0 , v ( l , t ) = 0 v(o,t)=0,v(l,t)=0 v(o,t)=0,v(l,t)=0则w在边界满足 w ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) w(0,t)=u_1(t),w(l,t)=u_2(t) w(0,t)=u1(t),w(l,t)=u2(t)
  2. w形式 w ( x , t ) = A ( t ) x + B ( t ) w(x,t)=A(t)x+B(t) w(x,t)=A(t)x+B(t)
    1. 满足 { w ( x , t ) = A ( t ) x + B ( t ) w ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) \left\{\begin{array}{l}w(x, t)=A(t) x+B(t) \\w(0, t)=u_{1}(t), w(l, t)=u_{2}(t)\end{array}\right. {w(x,t)=A(t)x+B(t)w(0,t)=u1(t),w(l,t)=u2(t)
    2. 解得 { A ( t ) = u 2 ( t ) − u 1 ( t ) l B ( t ) = u 1 ( t ) \left\{\begin{array}{l}A(t)=\frac{u_2(t)-u_1(t)}{l} \\B(t)=u_1(t)\end{array}\right. {A(t)=lu2(t)u1(t)B(t)=u1(t)
    3. ∴ w ( x , t ) = u 2 ( t ) − u 1 ( t ) l x + u 1 ( t ) \therefore w(x,t)=\frac{u_2(t)-u_1(t)}{l}x+u_1(t) w(x,t)=lu2(t)u1(t)x+u1(t)
  3. v在这里插入图片描述
    1. v ( x , t ) v(x,t) v(x,t)满足 { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f 1 ( x , t ) v ∣ x = 0 = 0 , v ∣ x = l = 0 v ∣ t = 0 = ϕ 1 ( x ) , ∂ v ∂ t ∣ t = 0 = ψ 1 ( x ) \left\{\begin{array}{l}\frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{x}^{2}}+\boldsymbol{f}_{1}(\boldsymbol{x}, \boldsymbol{t}) \\\left.\boldsymbol{v}\right|_{x=0}=0,\left.\quad \boldsymbol{v}\right|_{x=l}=0 \\\left.\boldsymbol{v}\right|_{t=0}=\phi_{1}(\boldsymbol{x}),\left. \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{t}}\right|_{t=0}=\psi_{1}(\boldsymbol{x})\end{array}\right. t22v=a2x22v+f1(x,t)vx=0=0,vx=l=0vt=0=ϕ1(x),tv t=0=ψ1(x)其中 f 1 ( x , t ) = f ( x , t ) − u 2 ′ ′ ( t ) − u 1 ′ ′ ( t ) l x − u 1 ′ ′ ( t ) ϕ 1 ( x ) = ϕ ( x ) − u 1 ( 0 ) − u 2 ( 0 ) − u 1 ( 0 ) l x ψ 1 ( x ) = ψ ( x ) − u 1 ′ ( 0 ) − u 2 ′ ( 0 ) − u 1 ′ ( 0 ) l x \begin{array}{l} f_{1}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t})-\frac{\boldsymbol{u}_{2}^{\prime \prime}(\boldsymbol{t})-\boldsymbol{u}_{1}^{\prime \prime}(\boldsymbol{t})}{\boldsymbol{l}} \boldsymbol{x}-\boldsymbol{u}_{1}^{\prime \prime}(\boldsymbol{t}) \\ \phi_{1}(\boldsymbol{x})=\phi(\boldsymbol{x})-\boldsymbol{u}_{1}(0)-\frac{\boldsymbol{u}_{2}(0)-\boldsymbol{u}_{1}(0)}{\boldsymbol{l}} \boldsymbol{x} \\ \psi_{1}(\boldsymbol{x})=\psi(\boldsymbol{x})-\boldsymbol{u}_{1}^{\prime}(0)-\frac{\boldsymbol{u}_{2}^{\prime}(0)-\boldsymbol{u}_{1}^{\prime}(0)}{\boldsymbol{l}} \boldsymbol{x} \end{array} f1(x,t)=f(x,t)lu2′′(t)u1′′(t)xu1′′(t)ϕ1(x)=ϕ(x)u1(0)lu2(0)u1(0)xψ1(x)=ψ(x)u1(0)lu2(0)u1(0)x

在这里插入图片描述

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值