泛函分析 02.06 赋范分析-习题课

§2.6 

1.l  线,x={ξ k }l  , 
x=sup n |ξ n | 
:l  . 
:(2.1.1). 
:(i)x=sup n |ξ n |0(); 
(ii)x=0sup n |ξ n |=0ξ n =0x=0(); 
(iii)αx=sup n |αξ n |=|α|sup n |ξ n |=|α|x(); 
(iv)x+y=sup n |ξ n +η n sup n |ξ n |+sup n |η n |=x+y 
() 
(l  ,)线. 

2.线Xd, 
d(x+z,y+z)=d(x,y)(0.0.1) 
d(αx,αy)=|α|d(x,y)(0.0.2) 
x=d(x,0).(X,)线. 
:(2.1.1),4. 
(0.0.1)(0.0.2),2.1.5. 
: 
(i)x=d(x,0)0(); 
(ii)x=0d(x,0)=0x=0(); 
(iii)(0.0.2), 
d(αx,0)=d(αx,α0)=|α|d(x,0), 
αx=d(αx,0)=|α|d(x,0)=|α|x(); 
(iv), 
x+y=d(x+y,0)d(x+y,y)+d(y,0) 
(0.0.1)d(x+y,y)=d(x,0), 
x+yd(x,0)+d(y,0)=x+y() 
(X,)线. 

3.(X,),x,yX, 
d(x,y)={0,x=y;xy+1,xy. (0.0.3) 
:d,. 
X 1 ,使 
d(x,y)=xy 1 ,x,yX. 
:(2.1.5). 
: 
(1)d(x,y)0(); 
(2)d(x,y)=0x=y(); 
(3)d(y,x)=d(x,y)(); 
(4)d(x,y)d(x,z)+d(z,y)(). 
4,: 
(5)d(x,y)=d(x+z,y+z)(); 
(6)d(αx,αy)=|α|d(x,y)(). 
:d(x,y). 
. 
x=y, 
d(x,y)=0d(x,z)+d(z,y); 
xy,d(x,y)=xy+1, 
(2.1.1),: 
d(x,y)=xy+1xz+zy+1. 
zxy,xz,: 
d(x,y)=xy+1xz+zy+1 
=d(x,z)+zyd(x,z)+d(z,y) 
:,d(z,y)zy. 
.d(x,y). 
 
d(αx,0)={αx+1,x0;0,x=0  
α{1,1,0},x0,d(αx,0)|α|d(x,0), 
,d(x,y). 
:23,. 

4.(X,),X{0}. 
:XBanachX 
S={xX|x=1} 
. 
:XXCauchy{x n }. 
::{x n }S,X, 
xX使x n x.(2.1.4), 
 
x=lim n x n =lim n x n =1, 
xS,S. 
:S,X{x n }, 
|x n x m |x n x m 0(n,m), 
{x n }. 
(1)lim n x n =0,lim n x n =0; 
(2)lim n x n =a>0, 
nx n a2 >0,x  n =x n x n  ,x  n S. 
x  n x  m =x m x n x n x m x n x m   
x n x m x n  +|x m x n |x n   
2a (x n x m +|x m x n |)(n) 
 
lim n,m x  n x  m =0, 
{x  n }S. 
S,x  S,使x  n x  (n) 
 
x n =x n x  n ax  X, 
X. 

5.l p (1p<)Banach. 
:, 
. 
XXCauchy. 
XX. 
:l p ,1p< 
x p =( k=1  |ξ k | p ) 1p  , 
 
d(x,y)=( n=1  |ξ n η n | p ) 1p   
(i): 
x n l p ,x n ={ξ i (n)}, 
ε>0,N,n,mN, 
d(x n ,x m )=( n=1  |ξ (n) i ξ (m) i | p ) 1p  <ε(0.0.4) 
n,mN, 
|ξ (n) i ξ (m) i }<ε(i=1,2,3,)(0.0.5) 
i,{ξ (n) i }. 
ξ i =lim n ξ (n) i ,x={ξ i }  i=1  
xl p ,x n x. 
(0.0.4),k 
 i=1 k |ξ (n) i ξ (m) i | p <ε p (n,mN), 
nN,m, 
 i=1 k |ξ (n) i ξ i | p ε p (nN), 
k, 
 i=1  |ξ (n) i ξ i | p ε p (nN) 
xl p ,x n x,. 
(ii), 
E 0 ={x:x=(r 1 ,,r n ,0,),nN + ,r i Q}, 
l p ,E 0 l p . 
E 0 l p . 
x={ξ i }l p ,ε>0,N,使 
 i=N+1  |ξ i | p <ε p 2 , 
ξ i (i=1,2,,N)(N,), 
r 1 ,r 2 ,,r N Q,使 
 i=1 N |ξ i r i | p <ε p 2 , 
x 0 =(r 1 ,r 2 ,,r N ,0,0,)E 0 ,使 
d(x,x 0 )=( i=1 N |ξ i r i | p + i=N+1  |ξ i | p ) 1p   
<(ε p 2 +ε p 2 ) 1p  =ε, 
l p . 
1:,, 
2:,使 
,,, 
.. 

6.x(t)[a,b], 
x p =( b a |x(t)| p dt) 1p  ,x  =max atb |x(t)|, 
:lim p x p =x   
:x(t)0,. 
x(t),|x(t)|. 
,t 0 [a,b]使 
|x(t 0 )|=max axb |x(t)|=x  >0. 
x p =( b a |x(t)| p dt) 1p   
( b a |x(t 0 )| p dt) 1p  =x  (ba) 1p   
 
lim p  ¯ ¯ ¯ ¯ ¯ ¯  x p x  (0.0.6) 
,|x(t)|t 0 , 
ε>0,δ>0,使 
|x(t)|>|x(t 0 )|ε>0,t(t 0 δ,t 0 +δ)[a,b] 
 
x p =( b a |x(t)| p dt) 1p   
( t 0 +δ t 0 δ (|x(t 0 )ε) p dt) 1p  =(x  ε)(2δ) 1p  , 
 
lim − − −   p x p x  ε 
ε 
lim − − −   p x p x  (0.0.7) 
(0.0.6)(0.0.7) 
x  lim ¯ ¯ ¯ ¯ ¯   p x p lim − − −   p x p x  , 
lim p x p =x   
1:, 
. 
2:x(t)L  ,. 
? 

7.Xm线,E 0 X, 
x 0 X,使x 0 =1, 
d(x 0 ,E 0 )=inf xE 0  x 0 x=1 
:Riesz2.3.11. 
:ε n =12 n  ,Riesz2.3.11, 
n,x n X,使x n =1 
d(x n ,E 0 )>112 n   
X,(2.4.17), 
. 
{x n }X,,{x n } 
{x n k  }. 
x n k  x 0 (k),x 0 =1. 
(d(x 0 ,E 0 )=lim k d(x n k  ,E 0 )1, 
,0E 0 , 
1=x 0 =x 0 0inf xE 0  x 0 x=d(x 0 ,E 0 ), 
d(x 0 ,E 0 )=1. 
:. 
Riesz(2.3.11) 
>1ε,=1. 

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值